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Searching & Hashing 7.1

MEMORY
1. The most appropriate matching for the following

pairs
List-I List-II

X. Indirect addressing 1. Loops
Y. Immediate addressing 2. Pointers

Z. Auto decrement addressing 3. Constants
(a) X– 3 Y– 2 Z – 1 (b) X – 1 Y – 3 Z – 2
(c) X – 2 Y – 3 Z – 1 (d) X – 3 Y – 1 Z – 2

[2000 :1 Mark]

2. The most appropriate matching for the following
pairs

List-I List-II

X. m=malloc(5); 1. using dangling
m = NULL; pointers

Y. free(n); n->value=5; 2. using uninitialized
pointers

Z. char *p; *p='a'; 3. lost memory

Codes:

(a) X – 1 Y – 3 Z – 2 (b) X – 2 Y – 1 Z – 3

(c) X – 3 Y – 2 Z – 1 (d) X – 3 Y – 1 Z – 2

[2000 :1 Mark]

3. The value of j at the end of the execution of the
following C program is_____

int incr (int i) {

static int count = 0;

count = count + i;

return (count);

}

main ( ) {

int i,j;

for (i = 0; i <=4; i++)

j = incr(i);

}

(a) 10 (b) 4

(c) 6 (d) 7 [2000 : 2 Marks]

4. In the C language

(a) at most one activation record exists between
the current activation record and the
activation record for the main

(b) the number of activation records between the
current activation record and the activation
record for the main depends on the actual
function calling sequence

(c) The visibility of global variables depends on
the actual function calling sequence

(d) Recursion requires the activation record for
the recursive function to be saved on a
different stack before the recursive function
can be called. [2002 : 1 Mark]

5. Consider the following declaration of a two-
dimensional array in C

char a[100] [100];

Assuming that the main memory is byte-
addressable and that the array is stored starting
from memory address 0, the address of a [40] [50] is

(a) 4040 (b) 4050

(c) 5040 (d) 5050 [2002 : 2 Marks]

6. Consider the following C function

void swap (int a, int b)

{ int temp ;

temp = a ;

a = b ;

b = temp ;

}

In order to exchange the values of two variables
x and y.

(a) call swap (x, y)

(b) call swap (&x, &y)

(c) swap (x, y) cannot be used as it does not return
any value

(d) swap (x, y) cannot be used as the parameters
are passed by value

[2004 :1 Mark]

7. An Abstract Data Type (ADT) is

(a) same as an abstract class

(b) a data type that cannot be instantiated

(c) a data type for which only the operations
defined on it can be used, but none else

(d) all of the above

[2005 : 1 Mark]

Searching & Hashing7
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7.2 Searching & Hashing

8. Match the following:
List-I

(P) static char var;
(Q) m = malloc(10); m = NULL;
(R) char *ptr[10];
(S) register int varl;
List-II
(i) Sequence of memory locations to store

addresses
(ii) A variable located in data section of memory
(iii)Request to allocate a CPU register to store

data
(iv) A lost memory which cannot be freed
(a) P  (ii), Q  (iv), R  (i), S  (iii)
(b) P  (ii), Q  (i), R  (iv), S  (iii)
(c) P  (ii), Q  (iv), R  (iii), S  (i)
(d) P  (iii), Q  (iv), R  (i), S  (ii)

[2017 (Set-2) : 1 Mark]
9. Consider the following C code:

#include <stdio.h>
int *assignval (int *x, int val)
{ *x = val;
return x;
}
void main()
{ int *x = malloc (size of (int));
if (NULL == x) return;
x = assignval(x, 0);
if(x)
{ x = (int*) malloc (size of (int));
if (NULL = = x) return;
x = assignval (x, 10);
}
printf (“%d”\n”, *x);
free (x);
}
The code suffers from which one of the following
problems:
(a) compiler error as the return of malloc is not

typecast appropriately
(b) compiler error because the comparison should

be made as x == NULL and not as shown
(c) compiles successfully but execution may result

in dangling pointer
(d) compiles successfully but execution may result

in memory leak

[2017 (Set-1) : 1 Mark]

HEAP
10. In a heap with n elements with the smallest

element at the root, the 7th smallest element
can be found in time

(a) (n log n) (b) (n)

(c) (log n) (d) (1)

[2003 : 1 Mark]

11. A data structure is required for storing a set of
integers such that each of the following operations
can be done in O(log n) time, where n is the
number of elements in the set.

1. Deletion of the smallest element.

2. Insertion of an element if it is not already
present in the set.

Which of the following data structures can be used
for this purpose?

(a) A heap can be used but not a balanced binary
search tree

(b) A balanced binary search tree can be used but
not a heap

(c) Both balanced binary search tree and heap
can be used

(d) Neither balanced binary search tree nor heap
can be used

[2003 : 2 Marks]

12. The elements 32, 15, 20, 30, 12, 25, 16 are inserted
one by one in the given order into a maxHeap.
The resultant maxHeap is

(a)

32

30

15 12 20

25

16

(b)

32

25

12 15 20

30

16

(c)

32

30

15 12 16

25

20

(d)

32

25

12 15 16

30

20

[2004 : 2 Marks]



Searching & Hashing 7.3

13. In a binary max heap containing n numbers, the
smallest element can be found in time

(a)  (n) (b)  (log n)

(c)  (log log n) (d)  (1)

[2006 : 1 Mark]

14. Which of the following sequences of array
elements forms a heap?

(a) {23, 17, 14, 6, 13, 10, 1, 12, 7, 5}

(b) {23, 17, 14, 6, 13, 10, 1, 5, 7, 12}

(c) {23, 17, 14, 7, 13, 10, 1, 5, 6, 12}

(d) {23, 17, 14, 7, 13, 10, 1, 12, 5, 7}

[2006 : 2 Marks]

Common Data for Q. 15 & Q. 16:

A 3-ary max heap is like a binary max heap,
but instead of 2 children, nodes have 3 children.
A 3-ary heap can be represented by an array as
follows: The root is stored in the first location, a [0],
nodes in the next level, from left to right, is stored
from a [1] to a [3]. The nodes from the second level of
the tree from left to right are stored from a [4] location
onward. An item x can be inserted into a 3-ary heap
containing n items by placing x in the location a [n]
and pushing it up the tree to satisfy the heap property.

15. Which one of the following is a valid sequence of
elements in an array representing 3-ary max
heap?

(a) 1, 3, 5, 6, 8, 9 (b) 9, 6, 3, 1, 8, 5

(c) 9, 3, 6, 8, 5, 1 (d) 9, 5, 6, 8, 3, 1

[2006 : 2 Marks]

16. Suppose the elements 7, 2, 10, and 4 are inserted,
in that order, into the valid 3-ary max heap found
in the above question. Which one of the following
is the sequence of items in the array representing
the resultant heap?

(a) 10, 7, 9, 8, 3, 1, 5, 2, 6, 4

(b) 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

(c) 10, 9, 4, 5, 7, 6, 8, 2, 1, 3

(d) 10, 8, 6, 9, 7, 2, 3, 4, 1, 5 [2006 : 2 Marks]

17. Consider the process of inserting an element into
a Max Heap, where the Max Heap is represented
by an array. Suppose we perform a binary search
on the path from the new leaf to the root to find
the position for the newly inserted element, the
number of comparisons performed is

(a) (log2 n) (b) (log2 log2 n)

(c) (n) (d) (n log2 n)

[2007 : 2 Marks]

18. We have a binary heap on n elements and wish
to insert n more elements (not necessarily one
after another) into this heap. The total time
required for this is

(a) (log n) (b) (n)

(c) (n log n) (d) (n2)

[2008 : 2 Marks]

Linked Answer Question 19 and 20:

Consider a binary max-heap implemented using an
array

19. Which one of the following array represents a
binary max-heap?

(a) {25, 12, 16, 13, 10, 8, 14}

(b) {25, 14, 13, 16, 10, 8, 12}

(c) {25, 14, 16, 13, 10, 8, 12}

(d) {25, 14, 12, 13, 10, 8, 16}

[2009 : 2 Marks]

20. What is the content of the array after two delete
operations on the correct answer to the previous
question?

(a) {14, 13, 12, 10, 8}

(b) {14, 12, 13, 8, 10}

(c) {14, 13, 8, 12, 10}

(d) {14, 13, 12, 8, 10}

[2009: 2 Marks]

21. A max-heap is a heap where the value of each
parent is greater than or equal to the value of its
children. Which of the following is a max-heap?

(a)

10

8

4 5 2

6

1

(b)

4 5 1 2

68

10

(c)

10

1284

5 6
(d)

10

2 8

1 4 6 10

[2011: 1 Mark]



7.4 Searching & Hashing

22. A priority queue is implemented as a Max-Heap.
Initially, it has 5 elements. The level-order
traversal of the heap is: 10, 8, 5, 3, 2. Two new
elements 1 and 7 are inserted into the heap in
that order. The level-order traversal of the heap
after the insertion of the elements is:
(a) 10, 8, 7, 3, 2, 1, 5
(b) 10, 8, 7, 2, 3, 1, 5
(c) 10, 8, 7, 1, 2, 3, 5
(d) 10, 8, 7, 5, 3, 2, 1

[2014 (Set-2) : 1 Mark]
23. Consider a max heap, represented by the array:

40, 30, 20, 10, 15, 16, 17, 8, 4.
Array Index 1 2 3 4 5 6 7 8 9
Value 40 30 20 10 15 16 17 8 4
Now consider that a value 35 is inserted into this
heap. After insertion, the new heap is
(a) 40, 30, 20, 10, 15, 16, 17, 8, 4, 35
(b) 40, 35, 20, 10, 30, 16, 17, 8, 4, 15
(c) 40, 30, 20, 10, 35, 16, 17, 8, 4, 15
(d) 40, 35, 20, 10, 15, 16, 17, 8, 4, 30

[2015 (Set-1) : 2 Marks]
24. Consider the following array of elements ('89, 19,

50, 17, 12, 15, 2, 5, 7, 11, 6, 9, 100). The minimum
number of interchanges needed to convert it into
a max-heap is
(a) 4 (b) 5
(c) 2 (d) 3

[2015 (Set-3) :1 Mark]
25. An operator delete (i) for a binary heap data

structure is to be designed to delete the item in
the i-th node. Assume that the heap is
implemented in an array and i refers to the
i-th index of the array. If the heap tree has depth
d (number of edges on the path from the root to
the farthest leaf), then what is the time
complexity to re-fix the heap efficiently after the
removal of the element?
(a) O(1)
(b) O(d) but not O(1)
(c) O(2d) but not O(d)
(d) O(d2d) but not O(2d)

[2016 (Set-1) : 2 Marks]
26. A complete binary min-heap is made by including

each integer in [1, 1023] exactly once. The depth
of a node in the heap is the length of the path
from the root of the heap to that node. Thus, the
root is at depth 0. The maximum depth at which
integer 9 can appear is

[2016 (Set-2) : 2 Marks]

27. The number of possible min-heaps containing
each value from {1, 2, 3, 4, 5, 6, 7} exactly once
is ______

[2018: 2 Marks]
28. An array [82, 101, 90, 11, 111, 75, 33, 131, 44, 93]

is heapified. Which one of the following options
represents the first three elements in the
heapified array?
(a) 131, 111, 90 (b) 131, 11, 93
(c) 82, 11, 93 (d) 82, 90, 101

[2024 (Set-1) : 2 Marks]
29. Consider a binary min - heap containing 105

distinct elements. Let k be the index (in the
underlying array) of the maximum element
stored in the heap. The number of possible values
of k is
(a) 52 (b) 1
(c) 53 (d) 27

[2024 (Set-1) : 2 Marks]

AVL
30. Which of the following is TRUE?

(a) The cost of searching an AVL tree is (log n)
but that of a binary search tree is O(n)

(b) The cost of searching an AVL tree is
(log n) but that of a complete binary tree is
(n log n)

(c) The cost of searching a binary search tree is
O (log n) but that of an AVL tree is (n)

(d) The cost of searching an AVL tree is
(n log n) but that of a binaiy search tree is
O(n)

[2008: 1 Mark]

31. What is the maximum height of any AVL-tree
with 7 nodes? Assume that the height of a tree
with a single node is 0.
(a) 2
(b) 3
(c) 4
(d) 5

[2009 : 2 Marks]

LINEAR PROBING
32. A hash table contains 10 buckets and uses linear

probing to resolve collisions. The key values are
integers and the hash function used is key % 10.
If the values 43, 165, 62, 123, 142 are inserted in
the table, in what location would the key value
142 be inserted?

(a) 2 (b) 3

(c) 4 (d) 6       [2005 : 1 Mark]



Searching & Hashing 7.5

33. Consider a hash function that distributes keys
uniformly. The hash table size is 20. After hashing
of how many keys will the probability that any
new key hashed collides with an existing one
exceed 0.5.

(a) 5 (b) 6

(c) 7 (d) 10

[2007 : 2 Marks]

34. Consider a hash table of size 11 that uses open
addressing with linear probing. Let h(k) = k mod
11 be the hash function used. A sequence of
records with keys 43 36 92 87 11 4 71 13 14 is
inserted into an initially empty hash table, the
bins of which are indexed from zero to ten. What
is the index of the bin into which the last record
is inserted?

(a) 3 (b) 4

(c) 6 (d) 7

[2008 : 2 Marks]

35. The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted
into an initially empty hash table of length 10
using open addressing with hash function h(k) =
k mod 10 and linear probing. What is the resultant
hash table?

(a)

0
1
2
3
4
5
6
7
8
9

2
23

15

18

(b)

0
1
2
3
4
5
6
7
8
9

2
13

5

18

(c)

0
1
2
3
4
5
6
7
8
9

12
13
2
3
23
5
18
15

(d)

0
1
2
3
4
5
6
7
8
9

12, 2
13, 3, 23

5, 15

18

[2009 : 2 Marks]

Linked Answer Questions 36 and 37

A has table of length 10 uses open addressing with
hash function h(k) = k mod 10, and linear probing.
After inserting 6 values into an empty hash table,
the table is as shown below.

0
1
2
3
4
5
6
7
8
9

42
23
34
52
46
33

36. Which one of the following choices gives a possible
order in which the key values could have been
inserted in the table?

(a) 46, 42, 34, 52, 23, 33

(b) 34, 42, 23, 52, 33, 46

(c) 46, 34, 42, 23, 52, 33

(d) 42, 46, 33, 23, 34, 52 [2010 : 2 Marks]

37. How many different insertion sequences of the
key values using the same hash function and
linear probing will result in the hash table shown
above?

(a) 10 (b) 20

(c) 30 (d) 40

[2010 : 2 Marks]

38. Consider a hash table with 9 slots. The hash
function is h(k) = k mod 9. The collisions are
resolved by chaining. The following 9 keys are
inserted in the order: 5, 28, 19, 15, 20, 33, 12, 17,
10. The maximum, minimum, and average chain
lengths in the hash table, respectively, are

(a) 3, 0, and 1 (b) 3, 3, and 3

(c) 4, 0, and 1 (d) 3, 0, and 2

[2014 (Set-1) : 2 Marks]

39. Consider a hash table with 100 slots. Collisions
are resolved using chaining. Assuming simple
uniform hashing, what is the probability that the
first 3 slots are unfilled after the first 3 insertions?

(a) (97 × 97 × 97)/1003

(b) (99 × 98 × 97)/1003

(c) (97 × 96 × 95)/1003

(d) (97 × 96 × 95)1(3! × 1003)

[2014 (Set-3) : 2 Marks]
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HASHING CONCEPT
40. Given the following input (4322, 1334, 1471, 9679,

1989, 6171, 6173, 4199) and the hash function x
mod 10, which of the following statements are true?

1. 9679, 1989, 4199 hash to the same value

2. 1471, 6171 hash to the same value

3. All elements hash to the same value

4. Each element hashes to a different value

(a) 1 only (b) 2 only

(c) 1 and 2 only (d) 3 and 4 only

[2004 : 1 Mark]

41. Which of the following statement(s) is TRUE?

I. A hash function takes a message of arbitrary
length and generates a fixed length code.

II. A hash function takes a message of fixed length
and generates a code of variable length.

III. A hash function may give the same hash value
for distinct messages.

(a) I only (b) II and III only

(c) I and III only (d) II only

[2006 : 1 Mark]

42. Consider the hash table of size seven, with starting
index zero, and a hash function (3x + 4) mod 7.
Assuming the has table is initially empty, which
of the following is the contents of the table when
the sequence 1, 3, 8,10 is inserted into the table
using closed hashing? Note that -denotes an
empty location in the table

(a) 8, -, -,-, 10 (b) 1, 8, 10, -, -, 3

(c) 1, -, 3 (d) 1, 10, 8, -, -, 3

[2007 : 2 Marks]

43. Which one of the following hash functions on
integers will distribute keys most uniformly over
10 buckets numbered 0 to 9 for i ranging from 0
to 2020?

(a) h(i) = i2 mod 10

(b) h(i) = i3 mod 10

(c) h(i) = (11 * i2) mod 10

(d) h(i) = (12 * i) mod 10

[2015 (Set-2) : 2 Marks]

44. Given a hash table T with 25 slots that stores
2000 elements, the load factor  for T is ____.

[2015 (Set-3) : 1 Mark]
45. An algorithm has to store several keys generated

by an adversary in a hash table. The adversary
is malicious who tries to maximize the number
of collisions. Let k be the number of keys, m be
the number of slots in the hash table, and k > m.
Which one of the following is the best hashing
strategy to counteract the adversary?

(a) Division method, i.e., use the hash function
h(k) = k mod m.

(b) Multiplication method, i.e., use the hash

function h(k) =       m kA kA ,  where A is

a carefully chosen constant.
(c) Universal hashing method.
(d) If k is a prime number, use Division method.

Otherwise, use Multiplication method.

[2023 : 1 Mark]

ANSWERS
1. (c) 2. (d) 3. (a) 4. (b) 5. (b) 6. (d) 7. (c) 8. (a) 9. (d) 10. (c)

11. (b) 12. (a) 13. (a) 14. (c) 15. (d) 16. (a) 17. (b) 18. (b) 19. (c) 20. (d)

21. (b) 22. (a) 23. (b) 24. (d) 25. (b) 26. (8) 27. (80) 28. (a) 29. (c) 30. (a)

31. (b) 32. (d) 33. (d) 34. (d) 35. (c) 36. (c) 37. (c) 38. (a) 39. (a) 40. (c)

41. (c) 42. (b) 43. (b) 44. (80) 45. (c)
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EXPLANATIONS

1. X-2, Y-3, Z-1

2. X – 3, A pointer is assigned to NULL without
freeing memory so it is example of memory leak

Y – 1, Trying to retrieve value after freeing it so
dangling pointer.

Z – 2, Using uninitialized pointers

3. At i = 0, j = 0

At i = 1, j = 1

At i = 2, j = 3

At i = 3, j = 6

At i = 4, j = 10

4. (a) False.There is no such restriction in C
language

(b) True.

(c) False. In C, variables are statically scoped,
not dynamically.

(d) False. The activation records are stored on
the same stack.

5. By defalut we are assuming that array store in
row major order.

Address of a[40][50]

= Base address + 40 * 100 * element_size

+ 50 * element_size

= 0 + 4000*1 + 50*1

= 4050

6. Since no print & instruction inside the body of
the function and function will return nothing in
the calling environment since (x, y) cannot be used
as, the parameters are passed by value.

7. The abstract data type (ADT) refers to a
programmer defined data type together with a
set of operations that can be performed on that
data so the choice (c) is correct.

8. P  (ii), Q (iv), R (i), S (iii)

9. The output of code is 10.

int * x = malloc (sizeof(int)); //assigns a memory
to x.

Now,

(int*) malloc(sizeof(int)); // again assigns a memory
to x. previous memory location is lost because
now we have no reference to that location

resulting in memory leak.

10. To find Kth smallest element the time Requierd
is klogn.

Here k is constant value so time complexity is
O(logn).

11. Deletion of the smallest element or randomly any
element is insertion or deletion.

Complexity is O (log2 n).

12. Max Heap are those tree in which root node has
larger value than that of the child and left sibling
has larger value than right.

Given numbers are 32, 15, 20, 30, 12, 25, 16 then
Max Heap tree will be

13. MAX Heap used to identity max element in O(1)
time for to identity min element require O(n).

14. Option (c) is level order traversal so max heap.
15. For keys 9, 5, 6, 8, 3, 1

3 - ary Max Heap is

9

8

3 1

65

16. After insertion of 7.

Heap is :-

3

8

3 5

67

1
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After inserting 2 &1024 resultant Head is
{10, 7, 9, 8, 3, 1, 5 2, 6, 4 } is level order traversal.

10

8

3 5

97

1
2

4
6

17. The height of a Max Heap is (logn).
If we perform binary search for finding the correct
position then we need to do (Log Logn)
comparisons.

18. Time complexity for build heap operation is O(n)
for n elements. If there are 2n elements then
still complexity is O(n).

19. Option (c) is level order traversal so max heap.
20. 25

14
16

13 10 8 12
After deleting 25 the Resultant Heap is

16

12

13 10 8

14

Now delete 16 then resultant Heap is

8

12

13 10

14

 Heepify 

14

12

8 10

13

level order traversal of Max Heap is 14, 13, 12,
18, 10.

21. Heap is a complete binary tree.

22. Given level order traversal is 10, 8, 5, 3, 2

So Heap is

10

12

3 2

8

Now insert 1 & 7 after than the resultant Heap is

10

7

3 2 1 5

8

Now, Level order traversal is = 10, 8, 7, 3, 2, 1, 5
23. Given Heap is

40

20

10 15 16 17

30

48

After inserting 35, find result is

40

20

30

35

8 4

10

15

So Level order traversal is 40 35 20 10 30 8 4 15
24. 1st swap is : 100 and 15

2nd swap is : 100 and 50
3rd swap is : 100 and 89
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25. After deletion to perform rehepify operation the
required time depends on the depth of the tree.
So required time for rehepification is O(d).

26. To find maximum depth of the tree we can use
the following concept.

Make integer 1 as a root node and take root as
level 1.

Make node 2 at level 2 as a child node of node 1.

Make node 3 at level 3 as the child node of node 2.

Similarly and so on for nodes 4,5,6,7

Make node 8 at level 8 as the child node of node 7.

Make node 9 at level 9 as the child node of node 8.

Putting other nodes properly, this arrangement
of the the complete binary tree will follow the
property of min heap.
So total levels are 9. node 9 is at level 9 and depth
of node 9 is 8 from the root.

27. Total number of ways to design min-heap with
7-elements

= C(6, 3) * 2! * 2! = 80.

28. Heapify : bottom-up construction :

(i) Heapify node with value 111. Nothing changes
as max-heap property is already satisfied.

82

90

3375

93

111

101

11

131 44

(ii) Heapify node with value 11. Now, 11 is
swapped with 131 so that max-heap property
is satisfied. (blue colored text in image).

(iii)Heapify node with value 90. Nothing changes
as max-heap property is already satisfied.

(iv) Heapify node with value 101. Now, 101 is
swapped with 131 so that max-heap property
is satisfied. (red colored text in image)

(v) Heapify node with value 82. Now 82 is swapped
with 131, then 82 is swapped with 111, then
82 is swapped with 93 so that max-heap property
is satisfied. (green colored text in image).

131

90

3375
93

111

101

8211 44

82

101

11

131

111

82

82
93

131

131

After heapify tree will look like

131

90

3375

111

93

82

101

11 44

Final array –

[131, 111, 90, 101, 93, 75, 33, 11, 44, 82]

Hence, option (a) is the correct answer.

29. As given that;

The distinct elements (n) = 105

As we know that,

In binary min heap of n elements exactly

n
2
 
  

internal nodes and 
n
2
 
  

leaf nodes.

Here, min heap is given, there is k index which
is of maximum elements.

So, the max element in min heap of n distinct

elements must be one of the leaf node is 
n
2
 
  

So, 
105

2
 
  

are number of leaf nodes = 53

Hence, option (c) is the correct answer.

30. AVL tree is a balanced tree. So, time complexity
of searching = (log n)
But a BST, may be skewed tree, so in worst case
BST searching time = (n)

31.

Maximum height = 3
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32. 43 store at location 3

165 store at a location 5

62 store at a location 2

123  3(collide) So according to linear probing
3 + 1 =  4

142  2(collide), 3(collide), 4(collide), 5(collide)
 = 6

33. For each entry probability of collision is 1/20.

According to question after inserting x values
probability becomes ½

(1/20) * x = 1/2

so x = 10

34. After insetting key into empty hash table using
hash function :-

0 11
1
2 13
3 36
4 92
5 4
6 71
7 14
8
9 43

10 87

So last value (i. e 14) is store at location 7.

35. In linear probing, if there is already an element
then the new element is fed into the next blank
value field in the table.

36. Sequencde in option (c) creates the hash table as
42, 23 and 34 appear before 52 and 33, and 46
appears before 33.

37. In a valid insertion sequence, the elements 42,
23 and 34 must appear before 52 and 33, and 46
must appear before 33.

So, 3! is for elements 42, 23 and 34 because they
can appear in any order, and 5 is for element 46
because 46 can appear at 5 different places
(i.e. any location before 33).

So total ways are 3! * 5 = 30 ways.

38. Keys :- 5, 28, 19, 15, 20, 33, 12 17, 10

Hash function h (k) = k mod 9.

After inserting keys into hash table the Status of
table is

0
1
2
3

4

5
6
7

8
9

28
20
12

5

15
8

19

33

x10

The Maximum chain length is 3.

The Minimum chain length is 0.

The average chain length is

 0 3 1 1 0 1 2 0 1 1
9

        

39. A
P(First insertion in such a way that first 3

slots are unfilled)    = 1

1

97C
100C

 = 97
100

B

P(second insertion in such a way that first

3 slots are unfilled) = 1

1

97C
100C

= 97
100

( chaining is used to resolve collision, so second
insertion can be done at same index as first
index]

C

P (Third insertion in such a way that first

3 slots are unfilled ) = 
1

1

97C
100C  = 

97
100

( Third insertion can be done at same index as
first or second index ]
So total prob. P (A)  P (B) P(C)

= 
97

100
  

97
100

 
97

100
 = 

 
3

97 97 97

100

 

40. The given Hash function is h(key) = key mod(10).

(*) hash value for the keys 9679, 1989 and 4199
are same, i.e. 9.

(*) Hash value for the keys 1471 and 6171 are
same i.e. 1
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41. 1. True.

2. False.

3. True.

42. 1 will occupy location 0.

3 will occupy location 6.

8 hashed to location 0 which is already occupied,
so it will be hashed to one location next to it (0)
i.e. to location 1.

Since 10 also clashes, so it will be hashed to location 2.

43. h(i) = l3 mod 10

i = 1 = 13 mod 10 = 1

2 = 23 mod 10 = 8

3 = 33 mod 10 = 7

4 = 43 mod 10 = 4

5 = 53 mod 10 = 5

6 = 63 mod 10 = 6

7 = 73 mod 10 = 3

8 = 83 mod 10 = 2

9 = 93 mod 10 = 9

10 = 103 mod 10 = 0

Hence the hash function will be h(i) = l3 mod 10

44. The load factor = (no. of elements)/(no. of table slots)

                 = 2000/25 = 80

45. The adversary is malicious who tries to maximize
the number of collisions by choosing keys that
all hash to the same slot. In such case, consider a
finite collection H of hash functions that maps
universe U of keys into {0, 1, 2, 3, ... m – 1}.

Here m is number of slots.

H is a function called universal, if for each pair of
keys k, I,   U where k  1, the number of hash
functions h   H for which h(k) = h(l) is less than

or equal to 
H

.
m

In otherwords, with a hash function 'h' chosen
randomly from H, the probability of collision

between two different keys is no more than 
1

.
m

This is the chance of collision when choosing two
slots randomly and independently.
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ASYMTOTIC NOTATION
1. Let f (n) = n2 logn and g(n) = n(logn)10 be two

positive functions of n. Which of the follovving
statements is correct?

(a) f(n) = O(g(n)) and g(n)   O(f(n))

(b) g(n) = O(f(n)) and f(n) O(g(n))

(c) f(n)  O(g(n)) and g(n)O(f(n))

(d) f(n) = O(g(n)) and g(n) = O(f(n))
[2001 : 1 Mark]

2. In the worst case, the number of comparisons
needed to search singly linked list of length n
for a given element is
(a) log2n (b) n/2
(c) log2n–l (d) n        [2002 : 1 Mark]

3. Consider the follovving functions

f(n) = n3n

g(n) = 2n log n2
h(n) = n!

Which of the follovving is true?
(a) h(n) is O(f(n))        (b) h(n) is O(g(n))
(c) g(n)is not O(f(n))   (d) f(n) is O(g(n))

[2002 : 2 Marks]
4. Consider the foliowing three claims

l. (n + k)m = (nm), where k and m are
constants

2. 2n + 1 = O(2n)
3. 22n + 1 = O(2n)
Which of these claims are correct?
(a) 1 and 2
(b) 1 and 3
(c) 2 and 3
(d) 1, 2 and 3          [2003 : 1 Mark]

5. Consider the following C function.
float f (float x, int y)
{

float p, s; int i;
for (s = 1, p = 1, i = 1; i < y; i ++)
{
      p* = x/i;
      s + = p;
}

return s;
}
For large values of y, the return value of the
function f best approximates
(a) xy (b) ex

(c) ln (1 + x) (d) xx

[2003 : 1 Mark]
6. The cube root of a natural number n is defined

as the largest natural number m such that
m3 < n. The complexity of computing the cube
root of n (n is represented in binary notation) is
(a) O(n) but not O(n0.5)
(b) O(n0.5) but not O ((log n)k) for any constant

k > 0.
(c) O((log n)k) for some constant k > 0, but not

O((log log n)m) for any constant m > 0
(d) O((log log n)k) for some constant k > 0.5,

but notO((log logn)0.5)
[2003 : 2 Marks]

7. The tightest lower bound on the number of
comparisons, in the worst case, for comparison-
based sorting is of the order of
(a) n (b) n2

(c) n log n (d) n log2 n
[2004 : 1 Mark]

8. Let A [1,..., n] be an array storing a bit (1 or 0)
at each location, and f(m) is a function whose
time complexity is (m). Consider the following
program fragment written in a C like language:
counter = 0;
for(i = 1; i < n; i++)
{

if (A[i] = = 1) counter ++;
else
{
f(counter);
counter = 0;
}

}
The complexity of trris program fragment is
(a) (n2) (b) (n log n) and O(n2)
(c) (n) (d) O(n logn)

[2004 : 2 Marks]

Algorithm Analysis & Sorting1
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9. The time complexity of the following C function
is (assume n > 0)
int recursive (int n)
{

if (n = = 1)
        return (1);
else
        return(recursive(n-l)+ recursive(n-l));

}
(a) O(n) (b) O (n log n)
(c) O(n2) (d) O (2n)

[2004 : 2 Marks]
10. The recurrence equation:

T(1) = 1
T(n) = 2T(n–l) + n, n > 2
evaluates to
(a) 2n+1 – n – 2 (b) 2n – n
(c) 2n+1 – 2n – 2 (d) 2n + n

[2004 : 2 Marks]
11. Let f (n), g(n) and h(n) be functions defined

for positive integers such that f (n) = O(g(n),
g(n)) O(f(n)), g(n) = O(h(n)), and h(n) = O(g(n)).
Which one of the foliowing statements is
FALSE?

(a)   f(n) + g(n) = O(h(n)) + h(n))

(b)   f(n) = O(h(n))

(c)   h(n)   O(f(n))

(d)   f(n)h(n)  O(g(n)h(n))

[2004 : 2 Marks]
12. The time complexity of computing the transitive

closure of a binary relation on a set of n
elements is known to be

(a) O(n)                       (b) O(nlogn)

(c) O(n3/2)                    (d) O(n3)

[2005 : 1 Mark]
13. Let T(n) be a function defined by the recurrence

T(n) = 2T(n/2) + n  for n > 2 and T(1) = 1.
Which of the following statements is TRUE?

(a) T(n) = (log n) (b) T(n) = ( n )

(c) T(n) = (n) (d) T(n) = (n log n)

[2005 : 2 Marks]

14. Suppose T(n) = 2T (n/2) + n, T(0) = T(l) = 1 Which
one of the following is FALSE?

(a) T(n) = O (n2)         (b) T(n) =  (n log n)

(c) T(n) = (n2)          (d) T(n) = O (n log n)

[2005 : 2 Marks]

Common Data for Q. 24 & Q. 25
Consider the following C function:

double foo(int n)
{
int i;
double sum;
if (n = = 0) return 1.0;
else
{
sum = 0.0;
for (i = 0; i < n ; i ++)
sum + = foo(i);
return sum;
}

} [2005 : 2 Marks]

15. The space complexity of the above function is
(a) O(1) (b) O(n)

(c) O(n!) (d) O(nn)

[2005 : 2 Marks]

16. The space complexity of the above function is
foo() and store the values of foo(i), 0 < = i < n,
as and when they are computed. With this
modification, the time complexity for function
foo() is significantly reduced. The space
complexity of the modified function would be

(a) O(1) (b) O(n)

(c) O(n2) (d) O(n!)

[2005 : 2 Marks]
17. Consider the following C-program fragment in

which i, j, and n are integer variables.

for(i = n, j = 0; i > 0; i/ = 2, j + = i);

Let Val (j) = denote the value stored in the
variable j after termination of the for loop.
Which one of the follovving is true?

(a) val (j) =  (log n) (b) val (j) =  ( n )

(c) val (j) =  (n) (d) val (j) =  (n log n)

[2006 : 1 Mark]
18. Consider the following is true?

T(n) = 2T  n    + 1, T(1) = 1

Which one of the following is true?

(a) T (n) =  (log log n)

(b) T (n) =  (log n)

(c) T (n) =   n

(d) T (n) =  (n) [2006 : 2 Marks]



Algorithm Analysis & Sorting 1.3

19. Consider the following segment of C code

int j, n;

j = i;

while (j < = n)

j = j*2;

The number of comparisons made in the
execution of the loop for any n > 0 is

(a) 2log n 1 (b) n

(c) 2log n (d) 2log n 1

[2007 : 1 Mark]
20. What is the time complexity of the following

recursive function:

int DoSomething (int n)

{

if (n < = 2)

    return 1;

else

     return DoSomething (floor (sqrt (n)))+n;

}

(a) (n2)

(b) (n log2n)

(c) (log2n)

(d) (log2 log2 n)

[2007 : 2 Marks]
21. An array of n numbers is given, where n is an

even number. The maximum as well as the
minimum of these n numbers needs to be
determined. Which of the following is true
about the number of comparisons needed?

(a) At least 2n – c comparisons, for some
constant c, are needed.

(b) At most 1.5n – 2 comparisons are needed.

(c) At least n log2 n comparisons are needed.

(d) Noneoftheabove

[2007 : 2 Marks]
22. Consider the following C code segment:

int IsPrime(n)

{

int i, n;

for(i = 2; i < = sqrt(n); i ++)

  {

if(n% i = = 0)

    printf ("Not Prime\n");

return 0;

   }

return 1;
}
Let T(n) denote the number of times the for
loop is executed by the program on input n.
Which of the following is TRUE?

(a) T(n) = O  n  and T(n) =   n

(b) T(n) = O  n  and T(n) = (1)

(c) T(n) = O(n) and T(n) =   n

(d) None of these
[2007 : 2 Marks]

23. Arrange the following functions in increasing
asymptotic order:
A. n1/3 B. en

C. n7/4 D. n log9 n
E.  1.0000001n

(a) A, D, C, E, B (b) D, A, C, E, B
(c) A, C, D, E, B (d) A, C, D, B, E

[2008 : 1 Mark]
24. When n = 22k for some k > 0, the recurrence

relation T(n) = 2 T(n/2) + n , T(1) = 1
evaluates to:

(a)  n (log n + l) (b) n log n

(c)   n log n (d) n log n

[2008 : 2 Marks]
25. Consider the follovving functions:

f(n) = 2n

g (n) = n!

h (n) = nlogn

which of the follovving statements about the
asymptotic behaviour of f (n), g(n), and h (n) is
true?

(a) f(n) = O(g(n)); g(n) = O(h(n))

(b) f(n) = (g(n)); g(n) = O(h(n))

(c) g(n) = O(f(n)); h(n) = O(f(n))

(d) h(n) = O(f(n)); g(n) = (f(n))

[2008 : 2 Marks]
26. The minimum number of comparison required

to determine if an integer appears more than
n/2 times in a sorted array of n integers is

(a) (n)

(b) (log n)

(c) (log2n)

(d) (1)

[2008 : 2 Marks]
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Common Data Questions Q. 27 and Q. 28

Consider the following C functions:

int f l(int n)

{

if(n = = 0 || n = = 1) return n;

else return (2* f1( n –1) + 3 * f1(n – 2));

}

intf2 (int n)

{ int i;

int X[N], Y[N], Z[N];

X[1] = 1; Y[1] = 2;Z[1] = 3;

for( i = 2; i < = n ; i ++ )

 {

    X[i]=Y[i-l] + Z[i-2];

    Y[i]=2*X[i];

    Z[i] = 3*X[i];

  }

return X[n] ;

  }

27. The running time of f 1 (n) and f2(n) are

(a) (n) and (n) (b) (2n) and  (n)

(c) (n) and (2n) (d) (2n) and  (2n)

[2008 : 2 Marks]

28. f1(8) and f2(8) return the values

(a) 1661 and 1640 (b) 59 and 59

(c) 1640 and 1640 (d) 1640 and 1661

[2008 : 2 Marks]
29. The running time of an algorithm is represented

by the following recurrence relation:

T(n) = 

n n 3

n
T cn otherwise

3




     
Which one of the following represents the time
complexity of the algorithm?
(a) (n) (b) (n log n)
(c) (n2) (d) (n2 log n)

[2009 : 2 Marks]
30. Two alternative packages A and B are available

for processing a database having 10k records.
Package A requires 0.0001 n2 time units and
package B requires 10nlog10n time units to
process n records. What is the smallest value of
k for which package B will be preferred over A?
(a) 12 (b) 10
(c) 6 (d) 5 [2010 : 1 Mark]

31. Let W(n) and A(n) denote respectively, the worst
case and average case running time of an
algorithm executed on an input of size n. Which
of the following is ALWAYS TRUE?
(a) A(n) = (W(n)) (b) A(n) = (W(n))
(c) A(n) = O(W(n)) (d) A(n) – o(W(n))

[2012 : 1 Mark]
32. The recurrence relation capturing the optimal

execution time of the Towers of Hanoi problem
with n discs is
(a) T(n) = 2T(n – 2) + 2
(b) T(n) = 2T(n – 1) + n
(c) T(n) = 2T(n/2) + 1
(d) T(n) = 2T(n – 1) + 1 [2012 : 1 Mark]

33. Consider the following function:
int unknown (int n)
{

int i, j, k = 0;
for (i = n/2; i < = n; i++)
    for(j = 2; j< = n; j = j*2)
         k = k + n/2;

return (k);
}
The return value of the function is
(a) (n2) (b) (n2 log n)
(c) (n3) (d) (n3 log n)

[2013 : 2 Marks]
34. Which one of the following correctly determines

the solution of the recurrence relation with
T(1)= 1?

T(n) = 2T
n
2

 
    + log n

(a) (n) (b) (n log n)
(c) (n2) (d) (logn)

[2014 (Set-2) : 1 Mark]
35. Suppose we have a balanced binary search tree

Tholding n-numbers. We are given two
numbers L and H and wish to sum up all the
numbers in Tthat lie between L and H. Suppose
there are m such numbers in T.
If the tightest upper bound on the time to
compute the sum is 0(na logbn + mc logdn), the
value of  + 10b + 100c + 1000d is ____.

[2014 (Set-3): 2 Marks]
36. Consider the following C function.

int fun 1 (int n)
{ int i, j, k, p, q = 0;

for (i = 1; i<n; ++i)
{      P = 0;
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        for(j = n; j > 1; j = j/2)
        ++p;
         for (k=l; k<p; k=k*2)
         ++q;
} return q;

}
Which one of the following most closely approxi-
mates the return value of the function fun1?
(a) n3 (b) n(logn)2

(c) n log n (d) n log (log n)
[2015 (Set-1) : 2 Marks]

37. An algorithm performs (logN)1/2 find operations,
N insert operations, (logN)1/2 delete operations,
and (logN)1/2 decrease-key operations on a set
of data items with keys drawn from a linearly
ordered set. For a delete operation, a pointer is
provided to the record that must be deleted. For
the decrease-key operation, a pointer is provided
to the record that has its key decreased. Which
one of the foliowing data structures is the most
suited for the algorithm to use, if the goal is to
achieve the best total asymptotic complexity
considering ali the operations?
(a) Unsorted array
(b) Min-heap
(c) Sorted array
(d) Sorted doubly linked list

[2015 (Set-1) : 2 Marks]
38. Consider a complete binary tree where the left

and the right subtrees of the root are max-
heaps. The lower bound for the number of
operations to convert the tree to a heap is
(a) (logn) (b) (n)
(c) (nlogn) (d)  (n2)

[2015 (Set-2) : 1 Mark]
39. An unordered list contains n distinct elements.

The number of comparisons to find an element in
this list that is neither maximum nor minimum is
(a) (n log n) (b) (n)
(c) (logn) (d) (1)

[2015 (Set-2) : 1 Mark]

40. Consider the equality 
n

3

i 0

i

  = X and the

following choices for X
I. (n4) II. (n5)
III. O(n5) IV. (n3)
The equality above remains correct if X is
replace by
(a) Onlyl
(b) Onlyll
(c) I or III or IV but not II
(d) II or III or IV but not I

[2015 (Set-3) : 1 Mark]

41. Let f(n) = n and g(n) = n(1+sin n), where n is a
positive integer. Which of the following
statements is/are correct?
I. f(n) = O(g(n))
II. f(n) = (g(n))
(a) Only I (b) Only ll
(c) Both I and II (d) Neither I nor II

[2015 (Set-3): 2 Marks]
42. The given diagram shows the flow chart for a

recursive function A(n). Assume that all
statements, except for the recursive calls, have
O(1) time complexity. If the worst case time
complexity of this function is O(n), then the
least possible value (accurate up to two decimal
positions) of a is ________.
Flow chart for Recursive Function A(n)

Start

A(n/2)

A(n/2) A(n/2) A(n/2)

A(n/2)

A(n/2)Return Return

ReturnReturn

[2016 (Set-2) : 2 Marks]
43. N items are stored in a sorted doubly linked

list. For a delete operation, apointer is provided
to the record to be deleted. For a decrease-key
operation, a pointer is provided to the record
on which the operation is to be performed. An
algorithm performs the following operations on
the list in this order: (N) delete, O(log N) insert,
O(log N) find, and (N) decrease-key. What is
the time complexity of all these operations put
together?
(a) O(log2N) (b)   O(N)
(c) O(N2) (d)   (N2 log N)

[2016 (Set-2) : 1 Mark]
44. Match the algorithms with their time complexities:

List-I (Algorithm)
(P) Towers of Hanoi with n disks
(Q) Binary search given n sorted numbers
(R) Heap sort given n numbers at the worst

case
(S) Addition of two n × n matrices

List-II (Time complexity)
(i) (n2)
(ii) (n log n)
(iii)(2n)
(iv)(log n)
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(a) P – (iii), Q – (iv), R – (i), S – (ii)
(b) P – (iv), Q – (iii), R – (i), S – (ii)
(c) P – (iii), Q – (iv), R – (ii), S – (i)
(d) P – (iv), Q – (iii), R – (ii), S – (i)

[2017 (Set-2) : 1 Mark]
45. Consider the recurrence function

T (n) = 
 2T n 1, n 2

2, 0 n 2

  


 
Then T(n) in terms of  notation is
(a) (loglogn) (b) (log n)

(c)   n (d) (n)

[2017 (Set-2) : 2 Marks]
46. Consider the following C function.

int fun (int n)
{    int i, j;

for (i = 1; i <= n; i++)
{   for (j = 1; j < n; j + = i)
    {
           printf{"%d %d", i, j);
    }
}

}

Time complexity of fun in terms of  notation
is

(a)  n n (b)   (n2)

(c) (n log n) (d)   (n2 log n)

[2017 (Set-2) : 2 Marks]
47. Consider the following functions from positive

integers to real numbers:

10, n , n, log2 n, 
100
n

Tire CORRECT arrangement of the above
functions in increasing order of asymptotic
complexity is:

(a) log2 n, 
100
n

,10, n ,n

(b)
100
n

, 10, log2 n, n , n

(c) 10, 
100
n

, n , log2 n, n

(d)
100
n

, log2n, 10, n , n

[2017 (Set-l):l Mark]

48. Let A be an array of 31 numbers consisting of a
sequence of 0's followed by a sequence of l's.
The problem is to find the smallest index i such
that A[i] is 1 by probing the minimum number
of locations in A. The worst case number of
probes performed by an optimal algorithm is
_________.

[2017 (Set-1): 2 Marks]

49. For parameters a and b, both of which are (1),
T(n) = T (n1/a)+ 1, and T(b) = 1. Then T (n) is

(a) (loga logb n) (b) (logab n)

(c) (logb loga n) (d) (log2 log2 n)

[2020 : 1 Mark]
50. Let P be an array containing n integers. Let t be

the lowest upper bound on the number of
comparisons of the array elements, required to
find the minimum and maximum values in an
arbitrary array of n elements. Which one of the
following choices is correct ?
(a) t > 2n – 2

(b)
     
n

t 3 and t 2n 2
2

(c)
     
n

t n and t 3
2

(d)     2t log n and t n

[2021 (Set-1) : 1 Mark]

51. Consider the following three functions.

n log n n
1 2 3f 10 f n f n  

Which one of the following options arranges the
functions in the increasing order of asymptotic
growth rate ?

(a) f3, f2, f1 (b) f2, f1, f3

(c) f1, f2, f3 (d) f2, f3, f1

[2021 (Set-1) : 1 Mark]
52. Consider the following recurrence relation.

 
n 2n

T T 7n if n 0
T n 2 5

1 if n 0

              
 

Which one of the following options is correct ?

(a) T(n) = (n5/2)

(b) T(n) =  (n log n)

(c) T(n) =  (n)

(d) T(n) =   
5
2log n

 
   [2021 (Set-1) : 2 Marks]
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53. For constants a  1 and b > 1, consider the
following recurrence defined on the non-negative
integers :

   n
T n a.T f n

b
   
 

Which one of the following options is correct about
the recurrence T(n) ?
(a) If f(n) is n log2(n), then T(n) is (n log2(n)).

(b) If f(n) is  2

n
,

log n  then T(n) is (log2(n)).

(c) If f(n) is O
  blog an 

 for some  > 0, then

T(n) is   blog an .

(d) If f(n) is   blog an , then T(n) is   blog an .

[2021 (Set-2) : 2 Marks]

54. Which one of the following statements is TRUE
for all positive functions f(n)?

(a) f(n2) = (f(n)2), when f(n) is a polynomial

(b) f(n2) = o(f(n)²)

(c) f(n2) = O(f(n)2), when f(n) is an exponential
function

(d) f(n2) = (f(n)2)

[2022 : 1 Mark]

55. Let f and g be functions of natural numbers given
by f(n) = n and g(n) = n2.

Which of the following statements is/are TRUE?

(a) f   O(g) (b) f   (g)

(c) f   o(g) (d) f   (g)

[2023 : 1 Mark]
56. Consider functions Function 1 and Function 2

expressed in pseudocode as follows:
    Function 1 Function 2
while n > 1 do for i = 1 to 100 * n do

for i = 1 to n do     x = x+ 1;
  x = x+ 1; end for
end for

n =   n / 2 ;

end while
Let f1(n) and f2(n) denote the number of times
the statement "x = x + 1" is executed in
Function_ 1 and Function_2, respectively.
Which of the following statements is/are TRUE?
(a) f1(n)   (f2(n)) (b) f1(n)   o(f2(n))
(c) f1(n)   (f2(n)) (d) f1(n)   O(n)

[2023 : 2 Marks]

57. Given an integer array of size N, we want to check
if the array is sorted (in either ascending or
descending order). An algorithm solves this
problem by making a single pass through the
array and comparing each element of the array
only with its adjacent elements. The worst - case
time complexity of this algorithm is
(a)  (N) but not O(N)
(b) O(N)  but not (N)
(c) Both O (N) and (N)
(d) Neither O (N) nor (N)

[2024 (Set-1) : 1 Mark]
58. Let T(n) be the recurrence relation defined as

follows:
T (0) = 1,
T (1) = 2, and
T (n) = 5T(n – 1) – 6T(n – 2) for n  2

Which one of the following statements is TRUE?
(a) T(n) = (n3n) (b) T(n) = (n2n)
(c) T(n) = (3n) (d) T(n) = (2n)

[2024 (Set-2) : 1 Mark]

59. Consider the following recurrence relation:

   nT n n for n 1
T n

1 for n 1

   


Which one of the following options is CORRECT?

(a) T(n) = (n log log n)

(b) T (n) = (n2 log n)

(c) T(n) = (n log n)

(d) T(n) = (n2 log log n)

[2024 (Set-1) : 2 Marks]

SORTING
60. Suppose there are log n sorted lists of n/log n

elements each. The time complexity of
producing a sorted list of all these elements is:

(Hint: Use a heap data structure)

(a) O(n log log n) (b) (n log n)

(c) (n log n) (d) (n3/2)

[2005 : 2 Marks]
61. Which one the foll owing inplace sorting

algorithms needs the minimum number of
swaps?
(a) Quicksort (b) Insertion sort
(c) Selection sort (d) Heap sort

[2006 : 1 Mark]
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62. Which of the following sorting algorithms has
the lowest worst-case complexity?

(a) Mergesort (b) Bubblesort

(c) Quicksort (d) Selectionsort

[2007 : 1 Mark]
63. If we use Radix Sort to sort n integers in the

range (nk/12, nk], for some k > 0 which is
independent of n, the time taken would be

(a)  (n) (b)  (kn)

(c)  (n log n) (d)  (n2)

[2008 : 2 Marks]
64. What is the number of swaps required to sort n

elements using selection sort, in the worst case?
(a) (n) (b) (n log n)
(c) (n2) (d) (n2 log n)

[2009 : 1 Mark]

65. A list of n strings, each of length n, is sorted
into lexicographic order using the merge sort
algorithm. The worst case running time of this
computation is

(a) O(n log n) (b) O(n2 log n)

(c) O(n2 + logn) (d) O(n2)
[2012 : 2 Marks]

66. Which one of the foliowing is the tightest upper
bound that represents the time complexity of
inserting an object into a binary search tree of
n nodes?

(a) O(1) (b) O(log n)

(c) O(n) (d) O(n log n)

[2013 : 1 Mark]
67. Which one of the following is the tightest upper

bound that represents the number of swaps
required to sort n numbers using selection sort?
(a) O(log n) (b) O(n)
(c) O(n log n) (d) O(n2)

[2013 : 1 Mark]
68. The number of elements that can be stored in

 (log n) time using heap sort is

(a)  (1) (b)   log n

(c) 
log n

log log n

 
 
  (d)  (log n)

[2013 : 2 Marks]
69. The minimum number of comparisons required

to find the minimum and the maximum of 100
numbers is ___________.

[2014 (Set-1) : 2 Marks]

70. An array of 25 distinct elements is to be
sorted using quicksort. Assume that the pivot
element is chosen uniformly at random. The
probability that the pivot element gets placed
in the worst possible location in the first round
of partitioning (rounded off to 2 decimal places)
is ________.

[2019 : 1 Mark]

QUICK SORT
71. Randomized quicksort is an extension of

quicksort where the pivot is chosen randomly.
What is the worst case complexity of sorting n
numbers using randomized quicksort?

(a) O(n) (b) (n log n)

(c) O(n2) (d)  O(n!)

[2001 : 1 Mark]
72. The median of n elements can be found in O(n)

time. Which one of the following is correct about
the complexity of quick sort, in which remains
is selected as pivot?
(a) (n) (b) (n log n)
(c) (n2) (d) (n3)

[2006 : 2 Marks]
73. Consider the Quicksort algorithm. Suppose

there is a procedure for finding a pivot element
which splits the list into sub-lists each of which
contains at least one-fifth of the elements. Let
T(n) be the number of comparisons required to
sort n elements. Then
(a) T (n) < 2T (n/5) + n
(b) T(n) < T (n/5) + T( 4n/5) + n
(c) T (n) < 2T (4n/5) + n
(d) T(n) < 2T (n/2 ) + n [2008 : 2 Marks]

74. In quick sort, for sorting n elements, the (n/
4)th smallest element is selected as pivot using
an O(n) time algorithm. What is the worst case
time complexity of the quick sort?
(a) (n) (b) (nlogn)
(c) (n2) (d) (n2log n)

[2009 : 2 Marks]
75. Let P be a quicksort program to sort numbers

in ascending order using the first element as
the pivot. Let t1 and t2 be the number of
comparisons made by Pfor the inputs [1 2 3 4 5]
and [4 1 5 3 2] respectively. Which one of the
following holds?
(a) t1 = 5 (b) t1 < t2

(c) t1 > t2 (d) t1 = t2

[2014 (Set-1) : 1 Mark]
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76. You have an array of n elements. Suppose you
implement quicksort by always choosing the
central element of the array as the pivot. Then
the tightest upper bound for the worst case
performance is
(a) O(n2) (b) O(nlogn)
(c) (nlogn) (d) O(n3)

[2014 (Set-3) : 1 Mark]
77. Which one of the following is the recurrence

equation for the worst case time complexity of
the Quicksort algorithm for sorting n(> 2)
numbers? In the recurrence equations given
in the options below, c is a constant.
(a) T(n) = 2T (n/2) + cn
(b) T(n) = T(n –1) + T(1) + cn
(c) T(n) = 2T (n –1) + cn
(d) T(n) = T(n/2) + cn

[2015 (Set-1): 1 Mark]
78. Suppose you are provided with the following

function declaration in the C programming
language.

int partition (int a[ ], int n);
The function treats the first element of a[ ] as a
pivot, and rearranges the array so that ali
elements less than or equal to the pivot is in
the left part of the array, and all elements
greater than the pivot is in the right part. In
addition, it moves the pivot so that the pivot is
the last element of the left part. The return
value is the number of elements in the left part.
The following partially given function in the C
programming language is used to find the kth
smallest element in an array a[ ] of size n using
the partition function. We assume k < n. int
kth_smallest (int a[ ], int n, int k)
{

int left_end = partition (a, n);
if(left_end+ 1==k)
{

return a [left_end];
}
if(left end+l>k)
{

return kth_smallest (_______);
}
else
{

return kth_smallest (_______);
}

}
The missing argument lists are respectively

(a) (a, left_end, k) and (a+left_end+l, n-left_end-
1, k-left_end-l)

(b) (a, left_end, k) and (a, n-left_end-l, k-
left_end-l)

(c) (a+left_end+l, n-left_end-l, k-left_end-l)
and(a, left_end, k)

(d) (a, n-left_end-l, k-left_end-l) and (a, left_end, k)
[2015 (Set-2) : 2 Marks]

79. The worst case running times of Insertion sort,
Merge sort and Quick sort, respectively, are:

(a) (n log n), (n log n), and (n2)

(b) (n2), (n2), and (n log n)

(c) (n2), (n log n), and (n log n)

(d) (n2), (n log n), and (n2)

[2016 (Set-1): 1 Mark]

INSERTION SORT
80. The usual (n2) implementation of Insertion

Sort to sort an array uses linear search to identify
the position where an element is to be inserted
into the already sorted part of the array. If
instead, we use binary search to identify the
position, the worst case running time will

(a) remain (n2) (b) become (n (log n)2)

(c) become (n log n) (d) become (n)

[2003 : 1 Mark]
81. What would be the worst case time complexity

of the insertion sort algorithm, if the inputs
are restricted to permutations of l...n with at
most n inversions?
(a)  (n2) (b) (n log n)
(c) (n1.5) (d) (n)   [2003 : 2 Marks]

MERGE SORT
82. Consider a list of recursive algorithms and a

list of recurrence relations as shown below.
Each recurrence relation corresponds to exactly
one algorithm and is used to derive the time
complexity of the algorithm.

List-I (Recursive Algorithm)
P. Binary search

Q. Merge sort

R. Quick sort

S. Tower of Hanoi

List-II (Recurrence Relation)
I. T(n) = T(n - k) + T(k) + cn

II. T(n) = 2T(n - 1) + 1

III. T(n) = 2T(n/2) + cn

IV. T(n) = T(n/2) + 1
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Which of the following is the correct match
between the algorithms and their recurrence
relations?

Codes:
P Q R S

(a) II III IV I

(b) IV III I II

(c) III II IV I

(d) IV II I III [2004 : 2 Marks]
83. Assume that a mergesort algorithm in the worst

case takes 30 seconds for an input of size 64.
Which of the following most closely
approximates the maximum input size of a
problem that can be solved in 6 minutes?
(a) 256 (b) 512
(c) 1024 (d) 2048

[2015 (Set-3): 2 Marks]

84. Assume that the algorithms considered here
sort the input sequences in ascending order. If
the input is already in ascending order, which
of the followingareTRUE?

I. Quicksort runs in Q(n2) time

II. Bubblesort runs in Q(n2) time

III. Mergesort runs in Q(n) time

IV. Insertion sort runs in Q(n) time

(a) I and II only (b) I and III only

(c) II and lV only (d) I and lV only

[2016 (Set-2): 1 Mark]

ALGO CONCEPT
85. Consider the following algorithm for searching

for a given number x in an unsortedarray
A[1 .......n] having n distinct values:
1. Choose an i uniformly at random from

1.. .n;
2. If A[i] = x then Stop else Goto 1;

Assuming that x is present on A, vvhat is
the expected number of comparisons made
by the algorithm before it terminates?

(a) n (b) n – 1
(c) 2n (d) n/2   [2002 : 2 Marks]

86. The running time of the follovving algorithm
Procedure A(n)

If n < = 2 return (1) else return   A n ; is

best described by
(a) O(n) (b) O(logn)
(c) O(log logn) (d) O(1)    [2002:2 Marks]

87. If all permutations are equally likely, what is
the expected number of inversions in a
randomly chosen permutation of l...n?

(a) n(n – 1)/2 (b) n(n – 1)/4

(c) n(n + 1)/4 (d) 2n[log2n]

[2003 : 2 Marks]

88. What does the following algorithm approximate?
(Assume m > 1,  > 0).
x = m ;
y = 1 ;
while  (x – y > )
{     x =   (x + y)  /  2 ;

      y = m / m ;
}
print  (x) ;
(a) log m
(b) m2

(c) m1/2

(d) m1/3 [2004 : 2 Marks]
89. Suppose each set is represented as a linked list

with elements in arbitrary order. Which of the
operations  among union,  intersection,
membership, cardinality will be the slowest?
(a) union only
(b) intersection, membership
(c) membership, cardinality
(d) union, intersection

[2004 : 2 Marks]

90. In the follovving table, the left column contains
the names of standard graph algorithms and
the right column contains the time complexities
of the algorithms. Match each algorithm with
its time complexity.

List-I
1. Bellman-Ford algorithm
2. Kruskal's algorithm
3. Floyd-Warshall algorithm
4. Topological sorting

List-II
A. O(mlog n)
B. O(n3)
C. O(nm)
D. O(n + m)

(a) 1-C, 2-A, 3-B, 4-D

(b) 1-B, 2-D, 3-C, 4-A

(c) 1-C, 2-D, 3-A, 4-B

(d) 1-B, 2-A, 3-C, 4-D [2005 : 1 Mark]
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91. An element in an array X is called a leader if it
is greater than all elements to the right of it in
X. The best algorithm to find ali leaders in an
array.

(a) Solves it in linear time using a left to right
pass of the array

(b) Solves in linear time using a right to left
pass

(c) Solves it is using divide and conquer in time
(n log n)

(d) Solves it in time (n2)       [2006 : 1 Mark]
92. Given two arrays of numbers a1,..., an and b1,...,

bn where each number is 0 or 1, the fastest
algorithm to find the largest span (i, j) such that
ai + ai+i +....+ aj = bi + bi+i +....+ bj"or report that
there is no such span,

(a) Takes O(3n) and (2n) time if hashing is
permitted

(b) Takes O(n3) and (n2.5) time in the key
comparison model

(c) Takes (n) time and space

(d) Takes O( n ) time only if the sum of the

2n [2006 : 2 Marks]
93. A set X can be represented by an array x[n] as

follows

x[i] = 
1; if i X
0; otherwise





Consider the following algorithm in which x, y,
and z are boolean arrays of size n: algorithm
zzz (x[ ], y[ ], z[ ])
{

int i;
for (i = 0; i < n; ++ i)

z[i] = (x [i]  ~ y[i]) (~x[i] y[i]);
}
The set Z computed by the algorithm is
(a) (XY) (b) (X   Y)
(c) (X – Y)   (Y – X) (d) (X – Y)   (Y – X)

[2006 : 2 Marks]
94. In an unweighted, undirected connected graph,

the shortest path from a node S to every other
node is computed most efficiently, in terms of
time complexity, by

(a) Dijkstra's algorithm starting from S.

(b) Warshall's algorithm

(c) performing a DFS starting from S

(d) performing a BFS starting from S

[2007 : 2 Marks]

95. Consider n jobs J1, J2,..., Jn such that job Ji has
execution time ti and a non-negative integer
weight wi. The weighted mean completion time

of the jobs is defined to be 
n n

i i i
i 1 i 1

w T w
 
  .

where Ti is the completion time of job Ji.
Assuming that there is only one processor
available, in what order must the jobs be
executed in order to minimize the weighted
mean completion time of thejobs?

(a) Non-decreasing order of ti

(b) Non-increasing order of wi

(c) Non-increasing order of witi

(d) Non-increasing order of wi/ti

[2007 : 2 Marks]

96. Suppose P, Q, R, S, T are sorted sequences
havinglengths 20,24,30,35,50 respectively. They
are to be merged into a single sequence by
merging together two sequences at a time. The
number of comparisons that will be needed in
the worst case by the optimal algorithm for
doing this is __________.

[2014 (Set-2) : 2 Marks]
97. Suppose you want to move from 0 to 100 on the

number line. In each step, you either move
right by a unit distance or you take a shortcut.
A shortcut is simply a pre-specified pair of
integers i, j with i < j. Given a shortcut i, j if
you are at position i on the number line, you
may directly move to j. Suppose T(k) denotes
the smallest number of steps needed to move
from k to 100. Suppose further that there is at
most 1 shortcut involving any number, and in
particular from 9 there is a shortcut to 15.
Let y and z be such that T(9) = 1 + min (T(y),
T(z)). Then the value of the product yz is_______.

[2014 (Set-3) : 2 Marks]
98. Match the follovving:

List-I
A. Prim's algorithm for minimum spanning

tree
B. Floyd-Warshall algorithm for ali pairs

shortest paths
C. Mergesort
D. Hamiltonian circuit

List-II
1. Backtracking
2. Greedy method
3. Dynamic programming
4. Divide and conquer
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Codes:
A B    C D

(a) 3 2 4 1
(b) 1 2 4 3
(c) 2 3 4 1
(d) 2 1 3 4

[2015 (Set-1) : 1 Mark]
99. Given below are some algorithms, and some

algorithm design paradigms.
List-I

A. Dijkstra's Shortest Path
B. Floyd-Warshall algorithm to compute all

pairs shortest path
C. Binary search on a sorted array
D. Backtracking search on a graph

List-II
1. Divide and Conquer
2. Dynamic Programming
3. Greedy design
4. Depth-first search
5. Breadth-first search
Match the above algorithms (List-I) to the
corresponding design paradigm (List-II) they
follow.
Codes:

A B    C D
(a) 1 3 1 5
(b) 3 3 1 5
(c) 3 2 1 4
(d) 3 2 1 5

[2015 (Set-2): 2 Marks]

100. The Floyd-Warshall algorithm for all-pair
shortest paths computation is based on

(a) Greedy paradigm

(b) Divide-and-conquer paradigm

(c) Dynamic Programming paradigm

(d) Neither Greedy nor Divide-and-Conquer
nor Dynamic Programming paradigm.

[2016 (Set-2): 1 Mark]
101. Consider the following table:

Algorithms Design Paradigms
(P) Kruskal (i) Divide and Conquer

(Q) Quicksort (ii) Greedy

(R) Floyd-Warshall (iii) Dynamic
Programming

Match the algorithms to the design paradigms
they are based on.

(a) (P)   (ii), (Q)   (iii), (R) (i)

(b) (P) (iii), (Q) (i), (R) (ii)

(c) (P) (ii), (Q) (i), (R) (iii)

(d) (P) (i), (Q) (ii), (R) (iii)

[2017 (Set-1) : 1 Mark]
102. Consider the following array.

23 32 45 69 72 73 89 97

Which algorithm out of the following options
uses the least number of comparisons (among
the array elements) to sort the above array in
ascending order ?

(a) Selection sort

(b) Mergesort

(c) Insertion sort

(d) Quicksort using the last element as pivot

[2021 (Set-1): 1 Mark]
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ANSWERS
1. (b) 2. (d) 3. (d) 4. (a) 5. (b) 6. (c) 7. (c) 8. (c) 9. (d) 10. (a)

11. (d) 12. (d) 13. (c) 14. (c) 15. (b) 16. (b) 17. (c) 18. (b) 19. (d) 20. (d)

21. (b) 22. (b) 23. (a) 24. (a) 25. (d) 26. (b) 27. (b) 28. (c) 29. (a) 30. (c)

31. (c) 32. (d) 33. (b) 34. (a) 35. (110) 36. (d) 37. (a) 38. (a) 39. (d) 40. (c)

41. (d) 42. (2.32) 43. (c) 44. (c) 45. (b) 46. (c) 47. (b) 48. (5) 49. (a) 50. (c)

51. (d) 52. (c) 53. (c) 54. (a) 55. (a, c) 56. (a, d) 57. (c) 58. (b) 59. (a) 60. (a)

61. (c) 62. (a) 63. (c) 64. (a) 65. (b) 66. (b) 67. (b) 68. (c) 69. (148) 70. (0.08)

71. (c) 72. (d) 73. (b) 74. (b) 75. (c) 76. (a) 77. (b) 78. (a) 79. (d) 80. (a)

81. (d) 82. (b) 83. (b) 84. (d) 85. (a) 86. (c) 87. (b) 88. (c) 89. (d) 90. (a)

91. (b) 92. (c) 93. (d) 94. (d) 95. (d) 96. (358 to 358) 97. (150) 98. (c) 99. (c)

101. (c) 101. (c) 102. (c)

EXPLANATIONS
1. f (n) = n2 logn

g (n) = n (logn)10

Here we can remove common factor from both
the function to simply the value of f (n) & g (n)
So f (n) = n
g (n) = (logn)9

Now choose the largest value of n to compare
both the  function.
if n = 2100 thenf (n) = 2 100

g (n) = (100)9

f (n) > g (n).
2. The worst case number of comparison is n. to

search any element from singly link list.

3. nf (n) 3n

2n log n log 2n n ng(n) 2 2 n  

nh(n) n! h 

So, f (n)  g (n) < h (n) (in terms of growth rate)
so f (n) = O (g (n))

4. Note:- In devotion place change first point by
1. (n+k)m = O (nm), where k and m are constants.
1. (n+k)m  O (nm) be cause k & m are constant

then growth rate of both the function is same.
2. 2n+1 2.2n , Here 2 is constant

So function is 2n. Statement is true.
3. 22n+1 2.22n  2.4n

So 4n> 2n then 22n+1O(2n).

5. For large value of y

P = 
x

P
i

S = S + P

When i < y and i + +

S =    
2 3x x x

1 .......
1 21 31

Hence S = ex

6. Use binary search in the array of number from
1 ........ n to check cube of the number matches n
(i.e. a[i]* a [i]* a [i] = = n). option (c) is true.

7. The best complexity in worst case for any
comparision based sorting technical cannot be
less then nlogn.

8. Case I :– if A = 0 0 0 0 0 0 0 ...

then always else part is execute so f (wanter)
where counter = 0

is executed n times. As given in clvestion
complexity of f (o) is O (1) So O (1) + O (1)..... b
times  O (n)

Case II : if A = [1, 1,.................1]

the loop execute n time and only if statment is
executed hence complexity is O (n).

Case III : if A = [1,0,1,0,1,0..........]

or A = [0,1,0,1,0,1...................]

or any other case.
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Both if and else is executed but every time when
else part is executed counter is again set to O.
Hence complexity is O (n).

9. Recurrence relation for function is

T (n) = 2 T (n – 1) + 1

= 2 [2T (n–2) + 1] + 1

= 4 T (n–2) + 2 + 1

= 4 [2T (n–3)+1] + 2 + 1

= 23 T (n–3) + 22 + 2 + 1

2k T (n–k) + 2K-1 + ---2+1

put n–k = 1

So 2n–1 T (1) + 2 h–2 + ----- 2 + 1

 2n–1 + 2n–2 + --- 2 + 1

 2n–1  O (2n).
10. T (1) = 1

T (n) = 2 T (n–1) + n , n  2

if n = 2 then

T (2) = 2 T (1) + 2

= 2 × 1 + 2 = 4

if n = 3 then T (3) = 2 T (2) + 3

= 2* 4 + 3 = 11

Put n = 3 in option (a)

24 – 3 – 2 = 16 – 3 – 2 = 11

so option (a) is true.
11. Given,

f (n) = O (g (n))

g (n)  O (f (n))

g (n) = O (h (n))

h (n) = O (g (n))

So conclusion is

f (n) < g (n) = h (n) { in terms of growth rate}

So

(a) f (n) + g (n) = O (h(n) + h (n)) is true.

(b) f (n) = O (h (n)) is true.

(c) h (n)  O (f (n)) is true.

(d) f (n) * h(n)  O (g(n) * h (n) is false.
12. The time complexity of computing the transitive

closure of binary relation on a set of n elements
is O (n3).

13.
n

T(n) 2T n
2

    
Apply master’s method

2
2logn n n 

So T(n) Q(n)

14. T (n) = 2 T (n/2) + n

Apply masters method.
2
2logn n n 

So T (n) = O (nlogn)

Now There growth rate of n2 and hlogn is greater
then and equal to nlogn theme (c) is flase T (n) =
52/ represent lower growth (n2)

15. Here foo(1) is recursive function. Spare complexity
is O (n) as there can be at most O (n) active
function at a time.

16. Space complexity is O (n). The space we need array
of size O (n). The space required for recursive
call would be O (1) as the value would be taken
from array again & again.

17. If n is a power of 2, then

 j = n + 
n
2

 + 
n
2

 + ..............+ log2n term

If n is not a power of 2, then there will be minor

differences of 1 at n
i2

 wherever n
i2 1–

 is odd.

Hence val (j) computed on the basis of n = 2n will
give a fair answer

j =  n + 
n
2

 + .............1 G.P..

= 

n
n

1
2

1

1
2

1

F
HG
I
KJ

F
HG

I
KJ

log

–

–

= 2n 1
1

2
–

log n
F
HG

I
KJ  = 2n 1

1
–

n
F
HG
I
KJ

= 2 (n – 1) =  (n)

18. T(n) 2T( n) 1 
Put n = 2K

T (2K) = 2T (n k/2) + 1
replace T (2k) by S (k)

S(k) = 2 S (k/2) + 1
Apply masters

2
2logK K 1 

So Q (k)

Now we know n=2k, k = log2 (n)

Then Q (logn)
19. Since, j increases in power of 2s.

if statement j = j * 2 executes k times, then
2k <  n

 k <  log2 n
Since k will be integer,

total number of comparison

= log2 n  + 1 (when loop exits)
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20. The given function is recursive so the equivalent
recursion equation is

T(n) = 1 n  2

T(n) = 2n nn 

All the level sums are equal to n. The problem
size at level k of the recursion tree is n2–k and we
stop recursing when this value is a constent.
Setting n2–k

 = 2 and solving for k gives us
2–k log2n = 1

 2k = log2 n
 k = log2 log2 n
So T(n) = (log2 log2n)

21. Since,
2n – c = average number of comparison

needed.
1.5 n – 2 = number of comparison in case.
n log2 n = also doesn't conform with number

of comparison needed.

22. Upper bound may be n  times it gets executed.
Lower bound may be that if gets executed only
once or twice.

23. B & E are exponential functional
so {B, E} > {A, C, D}
* for larger value of n E > B.
* A < C (clearly power is less)
* D < C for larger value of n
So A < D < C < E < B.

24. Given if n = 1 then T (1) = 1
So put n = 1 in all options only option (a) gives 1.

25. f (n) = 2n

g (n) = n!  nn

h (n) = n logn

for larger value of n
g (n) > f (n) > h (n)
so we can conclude that
f (n) = O (g (n)) or g(n) = w(f(n))
and h (n)= 0f(n).

26. The minimum number of comparison is logn.
27. Recurrence relation for f1()is

T (n) = 2T (n–1) + 3 T (n–2)
After solving it would be O ((1.6)n) so the largest
value among the options is O(2n).
f2 () is simple loop executed n times.
So O (n).

28. Both function preform same operation so result
is same 1640 & 1640

29. Applying Master’s Theorem
cn > nln

3
1

cn > n0

Now checking af(n/b)  kf(n) for some k < 1
1*cm/3  kcn
This is true for k > 1/3
Hence solution is (n).

30. B must be preferred on A as
0.0001 n2 < 10 n log10 n

 10–5 n < log10n
 10–5 < log10 n

1/n

 n 10–5 < log10n
We know log10n = k
 10k  = t
 k > 10–5 10k
 k > 10k–5

 k – 5 > 0
 k > 5
Then min k = 6

31. If B(n), XXA(n) and W(n) denote best case , average
case and worst case time complexities of an
algorithm P respectively then B(n) = O(A(n)),
A(n) = O(W(n))

32. Let the three pegs be A,B and C, the goal is to
move n pegs from A to C usingpeg B
The following sequence of steps are executed
recursively
1. move n – 1 discs from A to B. This leaves disc

n alone on peg A ..... T(n – 1)
2. move disc n from A to C ..... 1
3. move n – 1 discs from B to C so they sit on

disc n T(n – 1)
So, T(n) = 2T(n – 1) + 1

33. So, this is in (log n)
Hence Answer is (c)

The outer for-loop goes for 1
2
n
  iterations. The

inner for-loop runs independent of the otuer loop.

And for each inner iteration. 
2
n  gets added to k.

 Our answer = 
2
n    outer loops  #Inner loops

per outer loop
# Inner loops = (log n) [ 2(logn) = (n)]

 Our answer = 1 (log )
2 2

     
n n n = (n2 log n)

L1 = {0p 1q 0r | p, q, r  0}

L2 = {0p 1q 0r | p, q, r  0, p  r}
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34. Since f(n) = log n
a = 2, b = 2
finding logba using master’s method = log22 = 1
Hence, f(n) = n
So, T(n) = O(n)

35. The time complexity is O (m+ logn)
So C = 1, d = 0, a = 0, b = 1
0 + 10 × 1 + 100 × 1 + 1000 × 0 = [110]

36. * Outer loop (for i) executed n times.
* Loop (for j) executed logn times so value of

p = logn.
loop (for k) executed log p times.
So value of q = log p = log logn.
for every value of i loop (k) is executed so return
value is n * log logn

37. Unsorted array
The algorithm perform
find operation (log N)½

Insert operation N
delete operation (log N)½

decrease key operations (log N)½

Hence unsorted array is best data structure for
all above operations.

38. The subtrees are already Max-heap, so to make
it half, we have to heapify the root, which takes
(log n) time.

39. Suppose a list contains n elements, consider first
three element and find middle element which will
be neither maximum nor minimum.

Hence it is (1) .
40. I or III or IV but not II

as
3

0

n

i

i

  

2 2( 1)
4

n n 
,

this can be represent by Q(n4), O(n5) 4  (n3) but
not Q(n5).

41. As – 1  sin x  1, neither of them is true
42. The worst case recurrence reaction for flow chart

is

T (n) = 5 T (n/2)+ 1

Apply master’s method
5
2log 2.32n n 1 

T (n) = O (n2.32)

So 2.32

43. Delete operation require O (1) time total O (N)
Delete so time is = O (n).
Insert require O (n) time in worst case total O
(logn) insert so time is = O (Nlogn) to Search (logn)
key time is = nlogn.

To perform decrease key we need O (n) time
(because after decrease we need to arrange
elements in sorted sequerce) so total O (N)
decrease key So total time is O (N2) All operations
put together than worst time is O (N2)

44. As per the given algorithms and time complexities
we derive:
Towers of Hanoi with n disks

= 2T(n – 1) + 1 = (2n)
Binary search given n sorted numbers

= T(n/2) + 1 = (log n)
Heap sort given n numbers at the worst case

= 2T(n/2) + n =  (n log n)

Addition of two n  n matrices
= 4T(n/2) + 1 = (n2)

45. T(n)=  2T 1n       n > 2 ...(i)

T(n) =  22T 1n  ...(ii)

Put (ii) in (i)

T(n) =  22 * 2T 2n 

T(n) =  2 22 T 2n  ...(iii)

 2T n =  32T 1n  ...(iv)

Substituting (iv) in (iii)

T(n) =  3 32 T 3n 

Running the same till K times,

T(n) =  K K2 T Kn 

K n = 2

K = log2 n

Solving this will give

T(n) =  (log n)
46. By the given C function

First loop will execute 'n' times and the inner
loop will execute  (nlog n) times.

Hence the complexity will be (nlog n)

47. 10 = growth is o because constant function

n  growth is slower but faster than logn.

n = growth is linear.

log n = logarithmic growth.
100
n

 growth rate decrease with n.

48. The worst number of probes perform by an best
algorithm is log2 (31)  5.

49. (a)
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50. To find the Maximum and Minimum Elements in
an array simultaneously, Ceil(n/2) - 2 comparisons
are necessary and sufficient in the worst case to
find both the maximum and minimum of n
numbers.

So, 
n

t Ceil 2
2

    

Now by applying divide & conquer method, so

the number of comparision element are 
   

3n
2

2

Hence, option (c) is correct.

51. As given that f1 = 10n, f2 = nlogn

f3 nn

By taking log of all

f1 = nlog 10 = n.c

f2 = logn log n = (log n)2

3f n log n   n log n

f1 is exponential function, so grows fastest. And
between f2, f3 ; f3 grows faster than f2.

Hence, the increasing order is f1 < f2 < f3.

52. As given recurrence relation:

  n 2n
T n T T 7n

2 5
           

With recursion tree approach the cost at every
level is proportional to n.

T(n)

2

100
81n

n 2n
5

4
n

5
2

2
n

2
1

5
2n

5
2

5
2

× n

n

10
9nT T

T T T T

    
29 9

n n n ... log n times
10 10

     

29 9
n 1 ... log n times

10 10

         

= (n)

Hence, option (c) is the correct ansser.

53. Master Theorem

The Master Theorem applies to recurrences of
the following form:

   n
T m aT f n

b
   
 

Where a  1 and b > 1 are constant and f (n) is an
asymptotically positive function.

There are 3 cases:

(i) If f(n)  blog aO n   for some constant  > 0,

then T(n)  blog an  .

(ii) If f(n)  blog a kn log n   with 1k  0, then

T(n)  blog a k 1n log n 

(iii)If f(n)  blog an    with  > 0, f(n) satisfier

the regularity condition, then T(n) = (f (n)).

Regularity condition: af 
n
b

 
 
 

   cf (n) for some

constant c < 1 and all sufficiently large n.

Hence, option (c) is the correct answer.

54. Option (a) will always true for polynomial
function.

f(n2) = (f(n)2), when, f(n) is a polynomial

3 2 2 3 6

2 3 2 6

f(n) = n f(n) =(n ) =n  
equal

f(n) (n ) n

 


  

Option (b) is not true for the polynomial function.

f(n2) = o(f(n)2)

f(n) = n3  f(n)2 = (n2)3 = n6

f(n)2 = (n3)2 = n6

Option (c) is not true for any exponential function.

f(n2) = (f(n)2) when, f(n) is a exponential

f(n) = 2n  f(n)2 = 
2(n )2      

2(n ) 2n2 2

f(n)2 = (2n)2 = 22n

Option (d) is not true if the f(n) is log(n), then

f(n) = n2  f(n2) = f(n2)

2 2
2

2 2

f (n) log n f (n) log n 2log n
2log n (log n)

f (n) (log n)

     
 

So f(n2) = (f(n)2)
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55. f(n)   O(g(n)) iff f(n) asymptotically smaller or
equal to g(n) ....(A)

f(n)   o(g(n)) iff f(n) asymptotically smaller than
g(n) ....(B)
As Given function, f(n) = n, g(n) = n2

By taking each options:

(a) f   O(g)

n   O(n2)( True, according to (A))

(b) f   (g)

n   (n2) ( False)

(c) f   o(g)

n   o(n2)( True, According to (B))

(d) f   (g)

n   (n2) ( False)
56. According to question

Function 1

while n > 1 do

   for i = 1 to n do

      x = x + 1;

    end for

    n = n / 2 ;  

end while

f1(n) : Number of times x = x + 1 executes,

For Ist while loop- for loop will execute n times.

For IInd while loop- for loop will execute 
n
2

times

For IIIrd while loop- for loop will execute 2
n

2
times

For (k + 1)th while loop- for loop will execute

k
n

2
times

So, total no. of time: f1(n) = 2 k
n n n

n ....
2 2 2

   

where k
n

2
 > 1, n > 2k

Then k   log2n

f1(n) = 2 k
1 1 1

n 1 ....
2 2 2

 
    

 
 = (n)

Function 2

for i = 1 to 100 * n do

x = x + 1;

end for

f2(n) : Number of times x = x + 1 executes, for
loop will execute 100 × n times.

So, f2(n) = 100 * n = (n)

 f1(n) = (f2(n))

f1(n) = O(n) are correct

57. The objective of the algorithm is to check whether
the array is sorted or not, and it does so by
making a sinlge pass through the array.
For this the worst case will be when the array is
already sorted.
So, for this worst case, the algorithm has to
traverse the whole array and in doing so it will
take O(n) time when specified in O(·) notation of
(n) time when specified in (·) notation.
The above array can be sorted using bubble sort,
which will take one iteration is it will take O(n),
(n) which is (n).

58. As given that,

T(0) = 1

T(1) = 2

T(n) = 5T(n – 1) – 6T(n – 2); n  2

So, T(2) = 5T(1) – 6T(0) = 5 * 2 – 6 * 1 = 4 = 22

      T(3) = 5T(2) – 6T(1) = 5 * 4 – 6 * 2 = 8 = 23

      T(4) = 5T(3) – 6T(2) = 5 * 8 – 6 * 4 = 16 = 24

T(5) = 5T(4) – 6T(3) = 5 * 16 – 6 * 8 = 32 = 25 ... so on

 T(n) = (2n),

Alternative :
Characteristic equation = t2 – 5t + 6 = 0

Characteristic root = t = 3, 2

Complimentary function

=      n n
1 1 2 2C t C t n 

T(n) = n n
1 3C 2 C 3

1 = C1 + C2 {T(0) = 1}

2 = 2C1 + 3C2 {T(1) = 2}
                       

C1 = 1, C2 = 0
                       

T(n) = 1 × 2n + 0 × 3n

T(n) = 2n

Hence, T(n) = (2n)



Algorithm Analysis & Sorting 1.19

59. As given recurrence relation

for n 1n.T( n n)
T(n)

for n 11

      
T(n) = n1/2 . T(n1/2) + n

1 1
2 21 / 2 1 / 22 2T(n) n n T n n n

  
          

3 1
2 22 2

(n)T n .T n n n
 
     
 

3 1 1 1
2 3 3 22 2 2 2T(n) n n n n 2n
  
           

7 1
3 32 2T(n) n .T n 3n

 
    
 

 : k times

                { K = 1, 2, 3...}
k 12
k2

k
1

T(n) n .T n k.n
2



   
 

...(i)

Let us consider;

1
k2

k
2

2 2

n 2
2 log n
k log log n

 
   

 
 

 
 
Now, putting all values in equation (i);

2 2
1 T(2)

T(n) n 1 k n log log n
2 2

    
 

2 21
2k

n
T(n) .T(2) n.log log n

n

 
   
  

2 2 2 2
n

T(n) T(1) n.log log n (n log log n)
2
      

Hence, option (a) is the correct answer.

60.
n

x
log n



y = logn

n
wegetO * log n*log log n

109n
 
  

So O (n log logn)

61. Minimum no of swap for selection sort is O when
array is already sorted and maximum swap is
Q(n).

62. Merge sort has lowest worst – case complexity,
i.e. O(n log n), whereas all remaining three has
O(n2).

63. Time complexity of radix sort is = O (nd)

Where n = keys, d = maximum digit in keys.

= d = log (nk)

O (nd) = O (n * k logn)

= k× O (n logn)

= O (nlogn)
64. If there are n elements, then in worst case, total

swaps will be (n-1) in selection sort. So the number
of swaps is (n).
Alternately
The selection sort is similar to bubble sort except
it does not swap elements with every move.  The
sorting algorithm first finds the smallest element
in the list and then puts it in to place in single
swap. So n swap required for n elements.

65. Recurrence relation for merge sort
T (n) = 2 T (n/2) + n
So T (n) = Q (n logn)
but instead of integers whose comparison take O
(1) time, we are given n strings so to compare
strings we need Q (n) time hence complexity is Q
(n2 logn)

66. Given: n numbers
To find: Tighest upper bound on number of swaps
required to sort n numbers using selection sort.
Nalysis: In selection sort, in the unsorted part
of the array, we find the minimum element and
swap it with the value placed at the index where
the unsorted array starts.
Hence, for each element to put it in its sorted
position, we will do some swaps. In each
itenation, when we find the minimum and place
it in its sorted position, we do only one swap.
There are n such iterations, since maximum
number of positions to sort is n.
Hence, there are n. 0(1) swaps
 0(n) swaps.
 The solution is (b)

67. Given: n numbers

To find: Tighest upper bound on number of swaps
required to sort n numbers using selection sort.

Nalysis: In selection sort, in the unsorted part
of the array, we find the minimum element and
swap it with the value placed at the index where
the unsorted array starts.

Hence, for each element to put it in its sorted
position, we will do some swaps. In each
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itenation, when we find the minimum and place
it in its sorted position, we do only one swap.

There are n such iterations, since maximum
number of positions to sort is n.

Hence, there are n. 0(1) swaps

 0(n) swaps.

 The solution is (b)

68. Let the number of element is “K”, they can be
sorted in (k log k) time.

We try the options in decreasing order of
complexity since, we need a tight band i.e. 

i.e. (log n)   (log ) , log ,
log log

 
  
 

n n
n

 (1)

So if K  (log n) time required for loop sort is.
(k log k) i.e.

(log n  log log n), But this is not in (log n)

if k  log
log log

n
n

 
 
 

 time required for loop sort:


log log

log ,
log log log log

n n
n n

  
  

  

i.e. 

1

loglog
log1

log
loglog



   
           
 



n
n

n
n

69. From the list of given n numbers [say n is even],

Pick up first two elements, compare them

assign   Current – min = min of two numbers

Current – max = max of two numbers

From the remaining n – 2 numbers, take pairs
wise and follow this process given below.

1. Compare two elements

Assign min = min of two numbers

max = max of two numbers

2. Compare min and current – min

Assign current – min
= min{current–min,min}

3. Compare max and current – max
Assign  current – max

        = max{current – max, max}

Repeat above procedure for all the remaining
pairs of numbers. We can observe that each of
pair requires 3 comparisons

1. for finding min and max
2. For updating current – min

3. for updating current – max
But for initial pair we need only one comparison
not 3.

 Total number of comparisons = 
 3 – 2

1
2

n


= 
3

– 3 1
2
n

  = 
3

– 2
2
n

Here n =100, so number of comparisons = 148.

70. (0.08)

71. The worst case time complexity is O (n2).

72. T (n) = T (n/2) + T (n/2) + O (n) (for partition)

+ O (n) (for finding median)

On solving above using

Masters Method T(n) O(n log n)

73. In quicksort a set of number is reduced to sorting
two smaller set. We take first element as key
value and combine all other with this. A pivot
element which splits list into two sublists each of
which at least one fifth of element only (B), i.e.

T(n)  T(n/5) + T(4n/5) + n the problem.

Alternately

If one sublist contains 1/5 elements other contains
4/5 elements.

If T(n) number of comparisons for sorting n
elements.

So, for 1/5 elements = T(1/5n)

and for 4/5 elements = T(4n/5)

So,                T(n)  T(n/5) + T(4n/5) + n.

Here, n = time to spilt

74. Recurrance relation is

T (n) = T (n/4) + T (3n/4) + n

On solving using tree’s method.

T(n) O(n log n)

75. Partition algorithm for quick sort

Partition (A, P, q)// A [P, .....q]

x  A [P] // pivot =  A [P]

i  P
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for j =  P + 1 to q

     do if A [j]  x

then i  i + 1

     exchange A [i] A [j]

exchange A [P]  A [i]

return i [returning where pivot element is there after partitioning]

Recursively call the above algorithm for the two sub arrays [elements before and after pivot element] to
complete the sorting.

x = pivot      Pivot =x = A [B]

1 2 3 4 5 2  1  ?  NO 1 2 3 4 5 3  2  ?  NO
i j i j

1 2 3 4 5 1 2 3 4 5
i j 3  1 ? NO i       j 4  2  ?  NO

1 2 3 4 5 1 2 3 4 5
i j 4  1 ? NO i             j       5  2  ?  NO

1 2 3 4 5
i j 5  1 ? NO

exchange A [P] & A [i] exchange A [P] & A [J]

1 2 3 4 5

Pivot  Pivot Call recursively
for this subarray

1 2 3 4 5

Pivot  Pivot

Call recursively
for this

                   x = Pivot = A [P]      x = Pivot 

1 2 3 4 5 1 2 3 4 5

i j 4  3  ?  NO       i j 5  4  ?  NO

1 2 3 4 5

      i       j       5  3  ?  NO

exchange A [P] & A [i]    exchange A [P] & A[i]

1 2 3 4 5

Pivot  Pivot

1 2 3 4 5

Pivot  Pivot

 total 10 conparisons
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x = Pivot = A [P]
4 1 5 3 2

i j 1  4  ?  Yes

  i  i +1exchange A[i] & A[j] & increment j

4 1 5 3 2

i j  5  4  ?  NO

4 1 5 3 2

i j 3  4  ?  Yes

i  i +1 exchange A[i] & A[j] & increment j

4 1 3 5 2

i j 2  4  ?  Yes

i  i + 1

4 1 3 2 5

                   i j

exchange A[P] & A[i]

    
2 1 3 4 5

Pivot  Pivot Pivot
x = pivot = A (P)

2 1 3 |4| 5

i j 1  2  ?  Yes

2 1 3 |4|  5

i j  3  2  ?  NO

exchange A [P] & A[i]

1 2 3 4 5

Pivot

 6 conparisons

76. The Worst case time complexity of quick sort is
O (n2). This will happen when the elements of
the input array are already in order (ascending
or descending), irrespective of position of pivot
element in array.

77. The recurrence equation is

T(n) = T(n – 1) + T(1) + cn

In quick sort, worst case divide the list into two
list with 1 and (n – 1) elements each time.

78. When we put (a, left–End, K) and (a+ left – end + 1,
n– left – end –1, k– left–end –1)at the place of fill
in the blank alqorithm work for partition.

79. Worst Case
Insertion sort  O(n2)
Merge sort  O(n log n)
Quick sort  O(n2)

80. Complexity is remain same because we had swap
after finding to position of element so in worst
case swapirg for each element requires Q (n) time
hence complexihy is O (n2).

81. If array of size n with n inversion then complexity
of insation sort is Q (n)

Let us take an example.

(6 1  2  3  5  6  4)

total no. of comparision require to

Sort above array is 2 (n–1) = 2* 5 = 10

so complexity is Q (n).

82.  Algorithm Recurrence Relation 
P. Binary Search IV. T (n) = T (n/2) + 1 
Q. Merge Sort III. T (n) = 2T (n/2) + cn 
R. Quick Sort I. T (n) = T (n-k) + T (K) 
S. Tower of Hanoi II T (n) = 2T (n-1)+1 

83. Time complexty is O  (nlogn)

C *  64 log 64 = 30

(C = 5/14)

for 6 minuts

 5
* n log n 6 * 60 n 512

64
  

84. 1. Quicksort will take worst case, if the input is
in ascending order i.e (n2)

2. Insertion sort runs in (n) time.
85. The expected number of comparision is n.
86. Recurrance relation for procedure A (n) is

T(n) = T n +1 if n > 2

T(n) = 1   if n  2
T(n) = 1

Now, T (n) = T n +1

Put n = 2k, T (2k)= T (2 k/2) + 1
Use S (K) for T (2K) then

S (K) = S(k/2) + 1
Apply masters method.

K log2l  1
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So  (log k)
Now we know that

n =2k so, k= log 2n
So, O (log logn).

87. There are 
n(n 1)

2


 Pairs so average inversions are

n(n 1) 1
*

2 2


 
n(n 1)

4




88. Given program fragment in Pseudo language is
x = m ;
y = 1 ;
while (x – y > e)
x = (x + y) /2 
y = m/x 
}
Print (x)
This program will find out the square root of m,
suppose that m = 2

     X – Y X Y

Ist looping 2 3/2 = 1.5 2/1.5 = 1.33

2nd looping .16
1 5 1 3

2
1 415

. .
.




2 0
1 415

1 413
.

.
.

3rd looping 0.02 1.414 1.414

4th looping 0
as x – y = 0 exit from loop hence print 1.414 which
is root of 2.

89. Union & intersection is Slowest opeeration among
all.

90. Bellman ford = O (n*m)
Kruskal’s Alqo = O (m logn)
Floyd war shall = O (n3)
Topological sort = O (n+m)

91. The best algorithm is we can solve in linear time
using right to left pass.

92. a1, a2 .....................an

b1, b2 .....................bn

In order to find out the largest span, check the
sums of

ai +............aj and bi +..............bj at each step.

If a1 + a2 = b1 + b2 go on, check a1 + a2 + a3  and
b1 + b2 + b3.

If not, then check a2 + a3 and b2 + b3

Similarly a check is done at each of the n places
during traversal. A separate variable has to be
kept that contains the maximum span observed
hitherto.

Hence fastest algorithm computes with (~) (n)
time and space.

93. The statement inside the for loop is similar to
X–OR operation such that the set obtained is
(X Y) (XY).

It is equivalent to (X – Y)  (Y – X).

94. In case of unweighted, undirected graphs, BFS gives
the most time efficient computation for shortest
path. It is guaranteed to find first shortest path.

95. Non-increasing order of 
i

i

w
t

96. 20, 24, 30, 35, 50
Step 1 : We take

4430 35 50

20 24

Comparisons = (20 + 24 – 1) Max = 43

Step 2 : 65

30 35

44

20 24

50

Total comparison = 43 + (65 – 44) = 64

Step 3 : 9465

30 35 44 50

20 24

Total comparison = 64 + 19 = 83

Step 4 : 159

65 94

30 35 44 50

20 24

Total comparison = 93 + 65 = 158

= 158 + 93 + 64 + 43 = 358

97. By definition, T(9) = Dist. From 9 to 100

As given, T(9) = 1+min (T(y), T()(z) = 1 + min (Dist.
from y to 100, Dist. From z to 100)

 1 = Dist. from 9 to y/Dist. From 9 to z

 There are only two such values-one is the
simple one step on number line i.e. 10, and
the other is the shortcut associated with 9
i.e. 15.

 Therefore, y and z are 10 and 15 (in any order)

 Product yz = 150.
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98. Prims algorithm is greedy method because it
choose minimum distance node.

Floyd warshal’s is dynamic because it changes
the distance on each iteration.

Merge sort is divide and conquer because it divide
the hole list is sublist and combine after sorting
each sublist Hamiltonian cycle is based on
backtracking.

99. Dijkstra use gready approach, warshals use
dynamic programming approach, Binary search
is based on divide and conquer and Back tracking
is depth first search.

100. Dynamic programming
101. P – (ii)

Cl – (i)
R – (iii)

102. The given array is already sorted in ascending
order.
So, for already sorted array we can used these
sort techniques:
(i) Selection sort :
No matter how the data is arranged there  would
always be comparisons and swaps made and so
the time complexity for best, average and worst
case is : O(n^2).

In first pass, we need n–1 comparisons (Or n
comparisons, depending on the implementation)
In second pass, we need n–2 comparisons (Or
n–1 comparisons, depending on the
implementation) and so on.
So, The number of comparisons required by a
selection sort of n items can be computed by the
formula :

(n–1) + (n–2) + ... + 1 =    n 1
n

2


or
Number of selection sort comparisons

=    n
n 1

2


Basically, number of comparisons are (n^2) in
all cases.
(ii) Insertions Sort :
When elements are sorted, there are no swaps
and the correct position of the element in the
sorted list is the current index itself. The time
complexity is  : O(n). Insertion sort takes least
Number of comparisons = n – 1
Comparisons in total : 1 + 1 + ... + 1
= n – 1 (n).

(iii) Merge Sort :
We are dividing the list into two no matter if the
list is sorted or no. But if the array is sorted,
while merging the list there are no swaps merging
results into an array itself. Thus, the best,
average and worst case time complexity is :
O(nlogn).
Number of comparisons, in all cases, will be
O(nlogn).
(iv) Quick Sort :
The best case is when the elements are in a sorted
manner. The best and average case time
complexity is : O(nlogn).
Number of comparisons, in best case, will be
O(nlogn).
Since, for a number which is to be inserted in the
already sorted array, only one comparison will
be required.
So, answer will be insertion sort.
Hence, option (d) is correct answer.


