


For product information :

Visit www.gkpublications.com or email to gkp@gkpublications.com

Title : GATE 2025 : Electrical Engineering - 33 Years' Chapterwise Solved Papers (1992-2024)

Language : English

Editor’s Name : GKP Editorial Team

Copyright © : 2025 CLIP

No part of this book may be reproduced in a retrieval system or transmitted, in any form or by any
means, electronics, mechanical, photocopying, recording, scanning and or without the written
permission of the Author/Publisher.

Typeset & Published by :

Career Launcher Infrastructure (P) Ltd.
A-45, Mohan Cooperative Industrial Area, Near Mohan Estate Metro Station, New Delhi - 110044

Marketed by :

G.K. Publications (P) Ltd.
Plot No. 63, Sector-27A, Near Sector - 28 Metro Station, Faridabad, Haryana-121003

ISBN : 978-93-56817-20-3

Printer’s Details : Printed in India, New Delhi.



(iii)

 Preface (ix)

 About GATE (xi)

 GATE Syllabus (xxi)

 Chapter-Wise Analysis (xxiii)

VVerbal Ability

1. English Grammar 1.1 - 1.4

MCQ Type Questions 1.1

– Answers 1.4

– Explanations 1.4

2. Sentence Completion 2.1 - 2.6

MCQ Type Questions 2.1

– Answers 2.5

– Explanations 2.5

3. Synonyms 3.1 - 3.2

MCQ Type Questions 3.1

– Answers 3.2

– Explanations 3.2

4. Antonyms 4.1 - 4.1

MCQ Type Questions 4.1

– Answers 4.1

– Explanations 4.1

5. Reasoning Ability 5.1 - 5.18

MCQ Type Questions 5.1

Numerical Type Questions 5.12

– Answers 5.13

– Explanations 5.13

Numerical Ability

1. Numbers and Algebra 1.1 - 1.14

MCQ Type Questions 1.1

Numerical Type Questions 1.6

– Answers 1.7

– Explanations 1.8

2. Percentage and Its Applications 2.1 - 2.4

MCQ Type Questions 2.1

Numerical Type Questions 2.2

– Answers 2.2

– Explanations 2.3

3. Time and Work 3.1 - 3.4

MCQ Type Questions 3.1

Numerical Type Questions 3.2

– Answers 3.2

– Explanations 3.3

4. Ratio, Proportion and Mixtures 4.1 - 4.2

MCQ Type Questions 4.1

– Answers 4.1

– Explanations 4.2

Solved Papers (Chapter-Wise)



(iv)

5. Permutations and Combinations &
Probability 5.1 - 5.6

MCQ Type Questions 5.1

Numerical Type Questions 5.3

– Answers 5.3

– Explanations 5.4

6. Miscellaneous 6.1 - 6.8

MCQ Type Questions 6.1

Numerical Type Questions 6.4

– Answers 6.4

– Explanations 6.5

EEngineering Mathematics
1. Linear Algebra 1.1 - 1.12

MCQ Type Questions 1.1

Numerical Type Questions 1.4

– Answers 1.5

– Explanations 1.6

2. Calculus & Vector Analysis 2.1 - 2.10

MCQ Type Questions 2.1

Numerical Type Questions 2.3

– Answers 2.4

– Explanations 2.5

3. Differential Equations 3.1 - 3.6
MCQ Type Questions 3.1

Numerical Type Questions 3.2

– Answers 3.3

– Explanations 3.3

4. Complex Variables 4.1 - 4.6
MCQ Type Questions 4.1

– Answers 4.2

– Explanations 4.3

5. Probability and Statistics 5.1 - 5.6
MCQ Type Questions 5.1

Numerical Type Questions 5.2

– Answers 5.3

– Explanations 5.3

6. Numerical Methods 6.1 - 6.2
MCQ Type Questions 6.1

Numerical Type Questions 6.1

– Answers 6.1

– Explanations 6.1

7. Transform Theory 7.1 - 7.2
MCQ Type Questions 7.1

– Answers 7.1

– Explanations 7.2

Technical Section
1. Electric Circuits 1.1 - 1.66

MCQ Type Questions 1.1

Numerical Type Questions 1.21

– Answers 1.28

– Explanations 1.29

2. Electromagnetic Fields 2.1 - 2.16
MCQ Type Questions 2.1

Numerical Type Questions 2.6

– Answers 2.8

– Explanations 2.8

3.  Signals and Systems 3.1 - 3.32
MCQ Type Questions 3.1

Numerical Type Questions 3.13

– Answers 3.14

– Explanations 3.15

4. Electrical Machines 4.1 - 4.78
MCQ Type Questions 4.1

Numerical Type Questions 4.28

– Answers 4.35

– Explanations 4.37

5. Power Systems 5.1 - 5.65

MCQ Type Questions 5.1

Numerical Type Questions 5.27

– Answers 5.32

– Explanations 5.33

6. Control Systems 6.1 - 6.53

MCQ Type Questions 6.1

Numerical Type Questions 6.23

– Answers 6.25

– Explanations 6.26

7. Electrical and Electronics Measurements
7.1 - 7.28

MCQ Type Questions 7.1

Numerical Type Questions 7.12

– Answers 7.15

– Explanations 7.16



(v)

8. Analog Circuits 8.1 - 8.50

MCQ Type Questions 8.1

Numerical Type Questions 8.21

– Answers 8.25

– Explanations 8.26

9. Digital Circuits 9.1 - 9.20

MCQ Type Questions 9.1

Numerical Type Questions 9.9

– Answers 9.9

– Explanations 9.10

10. 8085 Microprocessor 10.1 - 10.6

MCQ Type Questions 10.1

Numerical Type Questions 10.4

– Answers 10.4

– Explanations 10.4

11. Power Electronics and Drives 11.1 - 11.50

MCQ Type Questions 11.1

Numerical Type Questions 11.19

– Answers 11.25

– Explanations 11.26

• Solved Paper 2024 1 - 29





Control Systems 6.1

MCQ TYPE QUESTIONS

1992
1. A unity feedback system has the open loop

transfer function

G(s) = 
1

( 1)( 2)( 3)s s s  

The Nyquist plot of G encircles the origin

(a) Never (b) Once

(c) Twice (d) Thrice
2. The Nyquist plot encloses the origin only

once from the above figure. Hence choice B is
correct. The overall transfer function of the
system in Figure, is

+

+

y

+

+

+
+

u

G

H

H

G

(a)
G

1 GH
(b)

2G
1 GH

(c)
GH

1 GH
(d)

2G
1 H

3. Which of the following figure(s)  represent
valid root loci in the s-plane for positive K?
Assume that the system has a transfer
function with real co-efficients.

(a)

(b)

(c)
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(d)

4. For what values of ‘a’ does the system shown
in Figure have a zero steady state error

[i.e., lim
t 

 ([t]) for a step input ?

+

–

E(t) s+1
s +5s+a2

1
s+4

(a) a = 0

(b) a = 0

(c) a  4

(d) for no value of ‘a’

5. Match the following transfer functions and
impulse responses

Transfer functions    Impulse Responses

A. s
s 1

(P) h(t)

t

B.
1
1 2( )s 

(Q) h(t)

t
C.

1
1 1s s( ) 

(R) h(t)

t

D. 1
12s 

(S) h(t)

t

(a) A-P, B-Q, C-S, D-R
(b) A-Q, B-P, C-S, D-R
(c) A-P, B-Q, C-R, D-S
(d) A-P, B-S, C-Q, D-R
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1994
6. The matrix of any state–space equations for the

transfer function c(s)/R(s) of the system, shown
below in Figure. is

(a)
1 0

0 1

 
  

(b)
0 1

0 1
 
  

(c) [–1] (d) [3]

7. The pole–zero configuration of a phase–lead
compensator is given by

(a) 

j W

(b) 

j W

(c) 

j W

(d)


j W

8. Match the polar plots for the following functions
on the left hand side

R e
  =  0I m

  =  

( P )

I m

  =  R e

  =  0
( S )

I m

–  1 1
R e

  =    =  0

( Q )

I m

  =  0

  =  R e

( T )

I m

  =  
  =  0

R e

( R )

I m

–  1 1
  =  0   =  

( U )

R e

(a)    
s

s s 1 2

(b)
s
s

2

3
1

(c)
s
s

2

2
1
1





(d)
1

102s 

1995
9. The closed-loop transfer function of a control

system is given by
C
R

( )
( )

( )
( ) ( )

s
s

s
s s




 
2 1

2 1
For a unit step input the output is

(a) –3 e– 2t + 4 e–t – 1 (b) –3 e– 2t – 4 e–t + 1

(c) zero (d) infinity
10. A system is described by the state equation

XX = AX + BU.
The output is given by Y = C X

where A = 
 


L
NM

O
QP

4
3

1
1

B = 
1
1
L
NM
O
QP

 C = [1, 0].

Transfer function G(s) of the system is

(a) 2 5 7
s

s s 
(b) 2

1
5 7s s 

(c) 2 3 2
s

s s 
(d) 2

1
3 2s s 

1996
11. The unit-impulse response of a unit-feedback

control system is given by

c(t) = –  te–t + 2 e–t, (t  0)

the open loop transfer function is equal to

(a)
s
s



1
2 2( ) (b)

2 1
2
s
s


(c)
s
s



1
1 2( ) (d)

s
s
1
2

12. Consider the unit-step response of a unity-
feedback control system whose open-loop

transfer functions is G(s) = 
1

1s s( )
. The

maximum overshoot is equal to

(a) 0.143 (b) 0.153

(c) 0.163 (d) 0.173

13. For a feedback control system of type 2, the
steady state error for a ramp input is

(a) infinite (b) constant

(c) zero (d) indeterminate

14. The closed-loop transfer function of a control

system is given by 
C( )
R(S)

s
 = 

1
1  s

. For the input

r(t) = sin t, the steady state value of c(t) is equal to

(a)
1
2  cos t (b) 1

(c)
1
2  sin t (d)

1
2  sin 1

4







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15. For the system shown in Figure, with a damping
ratio  of 0.7 and an undamped natural frequency
n of 4 rad/sec, the values of K and a are

1+aS

R(s) C(s)K
S(s+2)+–

(a) K = 4, a = 0.35 (b) K = 8, a = 0.455

(c) K = 16, a = 0.225 (d) K = 64, a = 0.9

16. The unit impulse response of a system is given
as c(t) = – 4 e–t + 6 e–2t .The step response of
the same system for t 0 is equal to

(a) – 3e–2t – 4e –t + 1

(b) – 3e –2t + 4e –t – 1

(c) – 3e –2t – 4e –t – 1

(d) 3e –2t + 4e –t – 1

1997
17. Introduction of integral action in the forward

path of a unity feedback system results in a

(a) marginally stable system

(b) system with no steady state error

(c) system with increased stability margin

(d) system with better speed of response

1998
18. The output of a linear time invariant control

systme is c(t) for a certain input r(t). If r(t) is mod-
ified by passing it through a block whose transfer
function is e–s and then applied to the systme, the
modified output of the system would be

(a)
c t
et

( )
1 

(b)
c t
e t

( )
1  

(c) c(t – 1) u(t – 1) (d) c(t) u(t – 1)

19. None of the poles of a lonear control system lie
in the right half of s-plane. For a bounded input,
the output of this system

(a) is always bounded

(b) could be unbounded

(c) always tends to zero

(d) none of the above

20. The phase lead compensation is used to

(a) increase rise time and decrease overshoot

(b) decrease both rise time and overshoot

(c) increase both rise time and overshoot

(d) decrease rise time and increase overshoot

21. A set of linear equations is represented by the
matrix equation Ax = b. The necessary condition
for the existence of a solution for this system is

(a) A must be invertible

(b) b must be linearly depended on the columns
of A

(c) b mut be linearly independent of the columns
of A

(d) none of the above

22. The vec tor  
1

2
1

L

N
MMM

O

Q
PPP

 i s  an  e igen vec tor  o f   A

= 
 


 

L

N
MMM

O

Q
PPP

2 2 3

2 1 6
1 2 0

. One of the eigen values of A is

(a) 1 (b) 2

(c) 5 (d) – 1

23. A = 

2 0 0 1
0 1 0 0
0 0 3 0
1 0 0 4





L

N

MMMM

O

Q

PPPP
. The sum of the eigen values

of the matrix A is
(a) 10 (b) – 10

(c) 24 (d) 22

24. For block diagram shown in Figure C(s)/R(s) is
given by

G1
+

R(s) _

H1

G2

H2

G3
C(s)

(a)
G G G

1 H G G H G G
1 2 3

2 2 3 1 1 2 

(b)
G G G

1 G G G H H
1 2 3

1 2 3 1 2

(c)
G G G

1 G G G H G G G H
1 2 3

1 2 3 1 1 2 3 2 

(d)
G G G

1 G G G H
1 2 3

1 2 3 1

25. The number of roots on the equation

2S4 + S3 + 3S2 + 5S + 7 = 0 that lie in the right
half of S plane is ;

(a) Zero

(b) One

(c) Two

(d) Three
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26. A = 
5 0 2
0 3 0
2 0 1

L

N
MMM

O

Q
PPP

. The inverse of A is

(a)
1 0 2
0 1

3
0

2 0 5





















(b)
5 0 2
0 1

3
0

2 0 1


















(c)

1
5

0 1
2

0 1
3

0
1
2

0 1























(d)

1
5

0 1
2

0 1
3

0
1
2

0 1



























1999
27. The function corresponding to the Bode plot

of Figure, is

(a) A = j f/f1 (b) A = 1/(1 – j f1/f)

(c) A = 1/(1 + jf1/f) (d) A = 1 + j f/f1

2000
28. Feedback control systems are

(a) insensitive to both forward-and feedback-path
parameter changes

(b) less sensitive to feedback-path parameter
changes than to forward-path parameter
changes

(c) less sensitive to forward-path parameter
changes than to feedback-path parameter
changes

(d) equally sensitive to forward-and feed
back- path parameter changes

29. A unity feedback system has open-loop transfer
function G(s). The steady-state error is zero for

(a) step input and type-1G(s)
(b) ramp input and type-1G(s)

(c) step input and type-G(s)

(d) ramp input and type-0 G(s)

30. A linear time-invariant system initially at rest,
when subjected to a unit-step input, gives a
response y(t) = te– t, t > 0. The transfer function
of the system is

(a)
1
1 2( )s  (b)

1
1 2s s( )

(c)
s

s( )1 2 (d)
1

1s s( )

31. The characteristic equation of a feedback control
system is

2s4 + s3 + 3s2 + 5s + 10 = 0

The number of roots in the right half of s-plane
are

(a) zero (b) 1

(c) 2 (d) 3

32. A unity feedback system has open-loop

transfer function G(s) =  
25

6s s  .

The peak overshoot in the step-input response
of the system is approximately equal to

(a) 5% (b) 10%

(c) 15% (d) 20%
33. Maximum phase-lead of the compensator

D(s) = 
(0.5s +  1)
(0.05s +  1)

, is

(a) 52 deg at 4 rad/sec (b) 52 deg at 10 rad/sec

(c) 55 deg at 12 rad/sec (d) None of these

34. Open-loop transfer function of a unity-feedback
system is

G(s) = G1(s). e–rD = 
e

s s s

s

 

D

( )( )1 2

Given :|G1(j)|  1 when  = 0.466.

What is the phase margin when D = 0?

(a) 51.9 (b) 61.9
(c) 41.9 (d) 71.9

35. A unity feedback system has open-loop transfer
function

G(s) = 
K( )

( )
s

s s



5
2

 ;  K  0

What is the value of K(if it exists) so that the
damping  of the complex closed loop poles
is  0.3?

(a) 1/2 (b) 5

(c) 2 (d) does not exist

2001
36. The polar plot of a type-1, 3-pole, open-loop

system is shown in the figure given below. The
closed-loop system is
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(a) always stable

(b) marginally stable

(c) unstable with one pole on the right half
s-plane

(d) unstable with two poles on the right half
s-plane

37. Given the homogeneous state-space equation

x  = 



L
NM

O
QP

3 1
0 2

x

The steady state value of xss = lim
t

 x(t), given

the initial state value of x(0) = [10 – 10]T, is

(a) xss =
0
0
L
NM
O
QP

(b) xss = 


L
NM
O
QP

3
2

(c) xss =
L
NM
O
QP

10
10

(d) xss = 


L
NM
O
QP

38. The conductors of a 10 km long, single phase,
two wire line are separated by a distance of 1.5
m. The diameter of each conductor is 1 cm. If
the conductors are of copper, then inductance of
the circuit is

(a) 50.0 mH (b) 45.3 mH

(c) 23.8 mH (d) 19.6 mH

39. The asymptotic approximation of the log-
magnitude versus frequency plot of a minimum
phase system with real poles and one zero is
shown in the figure given below. Its transfer
functions is

(a)
20( 5)

( 2)( 25)
s

s s s


  (b)
10 5
2 252

( )
( ) ( )

s
s s



 

(c)
20 5

2 252
( )

( ) ( )
s

s s s


  (d)
50 5

2 252
( )

( ) ( )
s

s s s


 

Common Data Q. (40 – 42)

A unity feedback system has an open-loop transfer
function of

G(s) = 
2

10000

( 10)s s 
40. What is the magnitude of G(j) in dB at an

angular frequency of  = 20 rad/sec?

(a) 0 dB (b) 10 dB

(c) 20 dB (d) none of these

41. What is the phase margin in degrees ?

(a) 36.86 (b) 56.86
(c) –36.86 (d) none of these

42. What is  the gain margin in dB ?

(a) –13.97 dB (b) 13.97 dB

(c) 43.97 dB (d) –43.97 dB

2002
43. Let s(t) be the step response of a linear system

with zero initial conditions; then the response
of this system to an input u(t) is

(a) s t u d
t

( ) ( )z   
0

(b)
d
dt

s t u d
t

( ) ( )
L

N
MM

O

Q
PPz   

0

(c) s t u d d
t t

( ) ( )
L

N
MM

O

Q
PPz z   

0

1 1

0

(d) s t u d( – ) ( )  2

0

1

z
44. Let Y(s) be the Laplace transformation of the

function y(t), then final value of the function is

(a) Lim
s

Y s
0

( ) (b) Lim
s

Y s


( )

(c) Lim
s

sY s
0

( ) (d) Lim
s

sY s


( )

45. The determinant of the matrix

1 0 0 0

100 1 0 0
100 200 1 0

100 200 300 1

L

N

MMMM

O

Q

PPPP  is

(a) 100 (b) 200

(c) 1 (d) 300

46. The state transition matrix for the system

X = AX with initial state X(0) is

(a) (sI – A)–1

(b) eAt X(0)

(c) Laplace inverse of [(sI – A)–1]

(d) Laplace inverse of [(sI – A)–1 X(0)]

47. For the system X  = 
2 3

0 5
X

1

0
L
NM
O
QP


L
NM
O
QP u, which of

the following statements is true ?
(a) The system is controllable but unstable

(b) The system is uncontrollable and unstable

(c) The system is controllable and stable

(d) The system is uncontrollable and stable
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48. A unity feedback system has an open loop transfer

function, G(s) = K
s2

. The root locus plot is

(a) (b)

(c) (d)

49. The transfer function of the system described by

d y

dt

dy
dt

du
dt

2u
2

2
   with u as input and y as output is

(a)
( )

( )

s

s s



2

2 (b)
( )

( )

s

s s





1
2

(c)
2

2( )s s
(d)

2
2

s

s s( )

50. For the system X = 
2 0

0 4
X

1

1
L
NM
O
QP


L
NM
O
QPu ; y = 4 0 X,

with u as unit impulse and with zero initial state,
the output, y, becomes

(a) 2 e2t (b) 4 e2t

(c) 2 e4t (d) 4 e4t

51. The eigen values of the system represented by

X = 

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

L

N

MMMM

O

Q

PPPPX are

(a) 0, 0, 0, 0 (b) 1, 1, 1, 1

(c) 0, 0, 0, –1 (d) 1, 0, 0,

2003
52. A control system is defined by the following

mathematical relationship

d x

dt

dx
dt

x
2

2 6 5   = 12 1 – –2tee j
The response of the system as t  is

(a) x = 6 (b) x = 2

(c) x = 2.4 (d) x = – 2

53. A lead compensator used for a closed loop
controller has the following transfer function

K 1

1

+
s
a

s
b

F
H
I
K

FH
I
K

For such a lead compensator

(a) a < b (b) b < a

(c) a > Kb (d) a < Kb

54. A second order system starts with an initial

condition of 
2
3
L
NM
O
QP

 without any external input. The

state transition matrix for the system is given

by
e

e

t

t

–2

–
0

0

L
N
MM

O
Q
PP  . The state of the system at the

end of 1 second is given by

(a)
0 271

1100

.

.
L
NM
O
QP (b)

0135

0 368

.

.
L
NM
O
QP

(c)
0 271

0736

.

.
L
NM
O
QP (d)

0135

1100

.

.
L
NM
O
QP

55. A control system with certain excitation is
governed by the following mathematical equation

d x
dt

dx
dt

x e et t
2

2
4 51

2
1

18
5 2    10 –

The natural time constants of the response of
the system are

(a) 2s and 5s (b) 3s and 6s

(c) 4s and 5s (d) 1/3s and 1/6s

Common Data Q. (56 – 57)
The block diagram shown in the figure given below
gives a unity feedback closed loop control system.

56. The steady state error in the response of the
above system to unit step input is

(a) 25 % (b) 0.75 %

(c) 6 % (d) 33 %

57. The roots of the closed loop characteristic
equation of the system are

(a) – 1 and – 15 (b) 6 and 10

(c) – 4 and – 15 (d) – 6 and – 10

58. The following equation defines a separately excited
dc motor in the form of a differential equation

d
dt

d
d a

2

2

2B
J t

K
LJ

K
LJ

V
 

  

The above equation may be organized in the
state-space form as follows

d

dt
d
dt

2

2




L

N

M
MMM

O

Q

P
PPP

 = P QV
d
dt a





L

N
M
M
O

Q
P
P 
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where P matrix is given by

(a)
 
L

N
MMM

O

Q
PPP

B
J

K
LJ

1 0

2

(b)
 
L

N
M
MM

O

Q
P
PP

K
LJ

B
J

0 1

2

(c)

0 1
K
LJ

B
J

2
 

L

N
M
M

O

Q
P
P

(d)

1 0
B
J

K
LJ

2
 

L

N
M
M

O

Q
P
P

59. The loop gain GH of a closed loop system is given

by the  expression 
K

s s s+ 2 4b g b g
The value of K for which the system just becomes
unstable is

(a) K = 6 (b) K = 8

(c) K = 48 (d) K = 96

60. The asymptotic Bode plot of the transfer function
K

1 +
s
a

  is given in the figure given below. The

error in phase angle and dB gain at a frequency
of  = 0.5 a are respectively

(a) 4.9 0.97 dB (b) 5.7 3 dB

(c) 4.9 3 dB (d) 5.7 0.97 dB

61. The block diagram of a control system is shown
in the figure given below. The transfer function
G(s) = Y(s)/U(s) of the system is

(a)
1

18 1 +
12

1 +
3

s sF
HG

I
KJ
F
HG
I
KJ

(b) 1

27 1 +
6

1 +
9

s sF
HG
I
KJ
F
HG
I
KJ

(c)
1

27 1 +
12

1 +
9

s sF
HG

I
KJ
F
HG
I
KJ

(d)
1

27 1 +
9

1 +
3

s sF
HG
I
KJ
F
HG
I
KJ

2004
62. The Nyquist plot of loop transfer function

G(s) H(s) of a closed loop control system passes
through the point (– 1, j0) in the G(s) H(s) plane.
The phase margin of the system is

(a) 0° (b) 45°
(c) 90° (d) 180°

63. Consider the function, F(s) = 
5

( 3 2)2s s s 
where F(s) is Laplace transform of the function f(t).

The initial value of f(t) is equal to

(a) 5 (b)
5
2

(c)
5
3

(d) 0

64. For a tachometer, if (t) is the rotor displacement
is radians, e(t) is the output voltage and Kt is the
tachometer constant in V/rad/sec, then the

transfer function, E( )
Q( )

s
s

 will be

(a) Kt s
2 (b)

Kt

s
(c) Kt s (d) Kt

65. For the equation,s3 – 4s2 + s + 6 = 0

the number of roots in the left half of s-plane will be

(a) zero (b) one

(c) two (d) three

66. For the block diagram shown in the figure given

below the transfer function
C
R

( )
( )
s
s

  is equal to

R(s) C(s)+

+

+

+

1
s

1
s

(a)
s

s

2

2
1

(b) s s
s

2

2
1 

(c) s s
s

2 1  (d)
1

12s s 

67. The state variable description of a linear
autonomous system is,

X = AX,

where X is two dimensional state vector, and

A is the system matrix given by  A = 
0 2
2 0
L
NM
O
QP

.

The roots of the characteristic equation are

(a) – 2 and + 2 (b) – j2 and + j2

(c) – 2 and – 2 (d) + 2 and + 2
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68. The block diagram of a closed loop control system
is given in the figure given below. The values of
K and P such that the system has a damping
ratio of 0.7 and an undamped natural frequency
n of 5 rad/sec, are respectively equal to

R(s) C(s)+

–

K
s(s + 2)

1 + sP

(a) 20 and 0.3 (b) 20 and 0.2

(c) 25 and 0.3 (d) 25 and 0.2

69. The unit impulse response of a second order
under-damped system starting from rest is given by

c(t) = 12.5 e–6t sin 8 t, t  0

The steady-state value of the unit step response
of the system is equal to

(a) 0 (b) 0.25

(c) 0.5 (d) 1.0

70. In the system shown in the figure given below
the input is    x(t) = sin t.

In the steady-state, the response y(t) will be

x(t) y(t)s
s + 1

(a)
1

2
 sin (t – 45°) (b)

1

2
45sin( )t  

(c) sin(t – 45°) (d) sin (t + 45°)
71. The open loop transfer function of a unity feedback

control system is given as G(s) = 
as

s
1
2 . The value

of ‘a’ to give a phase margin of 45° is equal to

(a) 0.141 (b) 0.441

(c) 0.841 (d) 1.141

2005
72. A system with zero initial conditions has the

closed loop transfer function.

T( ) =  
4

( 1) (  +  4)

2

s
s

s s



.

The system output is zero at the frequency
(a) 0.5 rad/sec

(b) 1 rad/sec

(c) 2 rad/sec

(d) 4 rad/sec

73. Figure given below shows the root locus plot
(location of poles not given) of a third order
system whose open loop transfer function is

(a)
K

3s

(b)
K

2s s( )1
1 2 3 Re–3 –2 –1

2 3

3

– 3
–23

Im

(c)
K

s s( )2 1

(d)
K

s s( – )2 1

74. The gain margin of a unity feedback control
system with the open loop transfer function

G (s) = 
(  +  1)

2
s

s
 is

(a) 0 (b)
1
2

(c) 2 (d) 

75. A unity feedback system, having an open loop

gain G( )H( )
K(1 )
(1 )

s s
s

s





, becomes stable when

(a) K  1 (b) K > 1

(c) K  1 (d) K < – 1

76. When subjected to a unit step input, the closed
loop control system shown in the figure given
below will have a steady state error of

(a) – 1.0 (b) – 0.5

(c) 0 (d) 0.5

77. In the GH(s) plane, the Nyquist plot of the loop

transfer function G( )H( )
 –0.25

s s
e

s



 passes

through the negative real axis at the point

(a) (– 0.25, j0) (b) (– 0.5, j0)

(c) (– 1, j0) (d) (– 2,  j0)

78. If the compensated system shown in the
figure given below has a phase margin of 60
at the crossover frequency of 1 rad/sec, then
value of the gain K is

1
s(s+1)

K+0.366s
+

–

R(s) Y(s)

(a) 0.366 (b) 0.732

(c) 1.366 (d) 2.738
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79. For the matrix p
3 2 2
0 2 1
0 0 1





L

N
MMM

O

Q
PPP

, one of the eigen

values is equal to –2. Which of the following is an
eigen vector ?

(a)

3

1
–2
L

N
MMM

O

Q
PPP

(b)

–3

–1
2
L

N
MMM

O

Q
PPP

(c)

1

3
–2
L

N
MMM

O

Q
PPP

(d)

2
5
0

L

N
MMM

O

Q
PPP

80. If u(t) is the unit step and  (t) is the unit impulse

function, the inverse z-transform of F(z) =
1

1z
for k > 0 is

(a) (–1)k (k) (b) (k) – (–1)k

(c) (–1)k  u(k) (d) u(k) – (–1)k

Linked Answer Q. (81 – 82)
A state variable system

X(t) =
0 1
0 3

X
1
0

,


L
NM
O
QP


L
NM
O
QP

t u ta f a f
with initial condition X(0) [–1  3]T and the unit step
input  u(t) has

81. The state transition matrix

(a)
1

1
3

0

1 3

3

L

N
MM

O

Q
PP





e

e

t

t

e j (b)
1

1
3

0

e e

e

t t

t

 



L

N
MM

O

Q
PP

3e j

(c)
1

1
3

0

e e

e

t t

t

 



L

N
MM

O

Q
PP

3

3

e j
(d)

1

0

1 L
N
MM

O
Q
PP





e

e

t

t
e j

82. The state transition equation

(a) X t
t e

e

t

ta f  L
N
MM
O
Q
PP





(b) X
3

t
t e

e

t

ta f  L
N
MM

O
Q
PP





(c) X
3

3

3t
t e

e

t

ta f  L
N
MM

O
Q
PP





(d) X
3

t
t e

e

t

ta f  L
N
MM

O
Q
PP





2006
83. For a system with the transfer function

H (s) = 
3 2

4 2 12
s

s s



 

a f
, the matrix A in the state

space form x = Ax + Bu is equal to

(a)
1 0 0
0 1 0
1 2 4 

L
N
MM

O
Q
PP (b)

0 1 0
0 0 1
1 2 4 

L
N
MM

O
Q
PP

(c)
0 1 0
3 2 1
1 2 4



L
N
MM

O
Q
PP (d)

1 0 0
0 0 1
1 2 4 

L
N
MM

O
Q
PP

84. A discrete real all pass system has a pole at
z = 2 30° : it, therefore

(a) also has a pole at 
1
2
30°

(b) has a constant phase response over the z-
plane: arg |H(z)| = constant

(c) is stable only, if it is anticausal

(d) has a constant phase response over the unit
circle: arg |H(ej)| = constant

85. The Bode magnitude plot of

H (j) = 
10 1

10 100

4

2
( )

( )



 

j

j j



 b g
 is

(a)

(b)

(c) 

(d) 
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86. A closed-loop system has the characteristic
function (s2 – 4) (s + 1) + K (s – 1) = 0. Its root
locus plot against K is

(a)

(b)

(c)

(d)

87. The algebraic equation

F(s) = s5 – 3s4 + 5s3 – 7s2 + 4s + 20 is given.

F(s) = 0 has

(a) a single complex root with the remaining
roots being real

(b) one positive real root and four complex roots,
all with positive real parts

(c) one negative real root, two imaginary roots,
and two roots with positive real parts

(d) one positive real root, two imaginary roots,
and two roots with negative real parts

88. Consider the following Nyquist plots of loop
transfer functions over  = 0 to   =  . Which
of these plots represents a stable closed loop
system ?

(1) (2)

(3) (4)

(a) (1) only (b) all, except (1)

(c) all, except (3) (d) (1) and (2) only

2007
89. The system shown in the figure given below

is



 S 
S +


S 









u1

u2

(a) stable

(b) unstable

(c) conditionally stable

(d) stable for input u1, but unstable for input u2

90. If x = Re G(j), and y = lm G(j) then for   0+,

the Nyquist plot for G(s) =   
1

1 2s s s 
 becomes

asymptotic to the line

(a) x = 0 (b) x = – 
3
4

(c) x = y –1/6 (d) x = 
3

y

91. The system 900
( 1)( 9)s s 

is be compensated such

that its gain-crossover frequency becomes  same
as its uncompensated phase-crossover frequency
and provides a 45 phase margin. To achieve this,
one may use

(a) a lag compensator that provides an
attenuation of 20 dB and a phase lag of 45
at the frequency of  3 3  rad/s

(b) a lead compensator that provides an
amplification of 20 dB and a phase lead of
45 at the frequency of 3 rad/s

(c) a lag-lead compensator that provides an
amplification of 20 dB and a phase lag of 45
at the frequency of 3  rad/s.

(d) a lag-lead compensator that provides an
attenuation of 20 dB and phase lead of 45 at
the frequency of 3 rad/s
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92. Consider the discrete-time system shown in the
figure where the impulse response of G(z) is
g(0) = 0, g(1) = g(2) = 1, g(3) = g(4) = ... = 0.

K

G (z)
+
+

This system is stable for range of values of K

(a)
1

–1, 
2

 
  

(b) [–1, 1]

(c)
1

– ,1
2

 
  

(d)
1

– , 2
2

 
  

93. If the loop gain K of a negative feedback system

having a loop transfer function 
 

 2
K s+3

8s   is to be

adjusted to induce a sustained oscillation then

(a) The frequency of this oscillation must be
4

3
 rad/s

(b) The frequency of this oscillation must be must
be 4 rad/s

(c) The frequency of this oscillation must be must

be 4 or 
4

3
 rad/s

(d)  such a K does not exist

94. The system shown in the figure below

b0
c0 b1

c1

a0 a1

1/s p1/s





can be reduced to the form

X Y P

Z

+

+

with

(a) X = c0s + c1,  Y = 
1

2
0 1s a s a d i

, Z = b0s + b1

(b) X = 1,  Y = 
c s c

s a s a
0 1

2
0 1



 

a f
d i

, Z = b0s + b1

(c) X = c1s + c0,  Y = 
b s b

s a s a
1 0

2
1 0



 

a f
d i

, Z = 1

(d) X = c1s + c0,  Y = 
1

2
1 0s a s a d i

, Z = b1s + b0

95. The R-L-C series circuit shown is supplied from
a variable frequency voltage source. The
admittance - locus of the R-L-C network at
terminals AB for increasing frequency  is



A R

L
C

(a)

Re

1m



(b)

Re

1m


(c)

Re

1m



(d)

Re

1m



96. Consider the feedback control system shown
below which is subjected to a unit step input.
The system is stable and has the following
parameters kp = 4, ki = 10  = 500 and  = 0.7

k1
s

kp +
– +

+
0

1
z

2

s2+2 s +  2

The steady state value of z is

(a) 1 (b) 0.25

(c) 0.1 (d) 0

2008
97. The characteristic equation of a (3  3) matrix P

is defined as

() = I – P =3 + 2 + 2 + 1 = 0.

If  I denotes identity matrix, then the inverse of
matrix P will be

(a) (P2 + P + 2I)

(b) (P2 + P + I)

(c) – (P2 + P + I)

(d) – (P2 + P + 2I)
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98. The transfer function of a linear time invariant
system is given as

G(s) = 
1

3 2s s2  

The steady state value of the output of this
system for a unit impulse input applied at time
instant t = 1 will be

(a) 0 (b) 0.5

(c) 1 (d) 2

99. The transfer functions of two compensators are

C1 = 10 (s + 1)
(s +10)

, C2 = s + 10
10 (s + 1)

Which one of the following statements is correct?

(a) C1 is a lead compensator and C2 is a lag
compensator

(b) C1 is a lag compensator and C2 is a lead
compensator

(c) Both C1 and C2 are lead compensators

(d) Both C1 and C2 are lag compensators

100. The asymptotic Bode magnitude plot of a
minimum phase transfer function is shown in
the figure

–40 dB/decade

0 dB/decade

(rad/s)

(log scale)

  
(dB)
G(j )

20

0

–20
0.1

–20 dB/decade

This transfer function has

(a) Three poles and one zero

(b) Two poles and one zero

(c) Two poles and two zeros

(d) One pole and two zeros

101. Figure shows a feedback system where K > 0.

The range of K for which the system is stable
will be given by

+ K
s(s+3)(s+10)

(a) 0 < K < 30 (b) 0 < K < 39

(c) 0 < K < 390 (d) K > 390

102. The transfer function of a system is given as

100

s s +1002  20

This system is

(a) an overdamped system

(b) an underdamped system

(c) a critically damped system

(d) an unstable system

2009
103. The measurement system shown in the figure

uses three sub-systems in cascade whose gains

are specified asG G1, 2 and 
1

G
.

3
The relative small

errors associated with each respective

subsystem G G1, 2 and G3  are  1 2, and  3 .  The

error associated with the output is

(a)  
1 2

3

1
  (b)  


1 2

3

.

(c)   1 2 3  (d)   1 2 3 

104. The polar plot of an open loop stable system is
shown below. The closed loop system is

(a) always stable

(b) marginally stable

(c) unstable with one pole on the RH s-plane

(d) unstable with two poles on the RH s-plane

105. The first two rows of Routh's tabulation of a third
order equation are as follows.

s3     2      2

s3     4      4

This means there are

(a) two roots at s  ± j and one root in right half
s-plane

(b) two roots at s  ± j2 and one root in left half
s-plane

(c) two roots at s  ± j2 and one root in right
half s-plane

(d) two roots at s  ± j and one root in left half
s-plane
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106. The asymptotic approximation of the log-
magnitude vs frequency plot of a system
containing only real poles and zeros is shown
in the figure given below. Its transfer function is

(a)
10 5

2 25
( )

( )( )
s

s s s


  (b)
1000 5

2 252

( )
( )( )

s

s s s


 

(c)
100 5

2 25
( )

( )( )
s

s s s


 
(d)

80 5

2 252

( )
( )( )

s

s s s


 

107. The unit-step response of a unity feedback
system with open loop transfer function

G(s) = 
K

(s+1)(s+2) 
is shown in the figure below..

The value of K is

(a) 0.5 (b) 2

(c) 4 (d) 6

108. The open loop transfer function of a unity
feedback system is given by

G( )
( ).

s
e

s

s


0 1

.

The gain margin of this system is

(a) 11.95 dB (b) 17.67 dB

(c) 21.33 dB (d) – 23.9 dB

2010
109. As shown in the figure, a negative feedback

system has an amplifier of gain 100 with ±10 %
tolerance in the forward path, and an attenuator

of value 9
100

in the f eedback path. The overall

system gain is approximately
+

–
100 ± 10%

9/100

(a) 10 ± 1% (b) 10 ± 2%

(c) 10 ± 5% (d) 10 ± 10%

110. For the system 
2

( 1)s  , the approximate time

taken for a step response to reach 98% of its
final value is

(a) 1 s (b) 2 s

(c) 4 s (d) 8 s

111. If the electrical circuit of Fig.(b) is an equivalent
of the coupled tank system of Fig.(a), then

h 1 h 2
A C

B D

(a) Coupled tank        (b) Electrical equivalent

(a) A, B are resistances and C, D capacitances

(b) A, C are resistances and B, D capacitances

(c) A, B are capacitances and C, D resistances

(d) A, C are capacitances and B, D resistances

112. The frequency response of G(s) = 
1

[ ( 1)( 2)]s s s 
plotted in the complex G(j) plane (for 0 <  < ) is

(a) (b)

(c) (d)

113. The system x  = Ax + Bu with A = 
1 2

,
0 2

 
 
 

B =
0

1
 
 
 

 is

(a) stable and controllable

(b) stable but uncontrollable

(c) unstable but controllable

(d) unstable and uncontrollable

114. The characteristic equation of a closed-loop
system is s(s + 1)(s + 3) + k(s + 2) = 0, k > 0. Which
of the following statements is true?

(a) Its roots are always real

(b) It cannot have a breakaway point in the range
– 1 < Re[s] < 0

(c) Two of its roots tend to infinity along the
asymptotes Re[s] = – 1

(d) It may have complex roots in the right half plane
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115. The frequency response of a linear system G(j)

is provided in the tabular form below

|G(j)| 1.3 1.2 1.0 0.8 0.5 0.3

 G(j) –130 – 140 –150 –160 – 180– 200
The gain margin and phase margin of the system are

(a) 6 dB and 30 (b) 6 dB and – 30
(c) – 6 dB and 30 (d) – 6 dB and – 30

116. The steady state error of a unity feedback linear
system for a unit step input is 0.1. The steady
state error of the same system, for a pulse input
r(t) having a magnitude of 10 and a duration of
one second, as shown in the figure is

(a) 0

(b) 0.1

(c) 1

(d) 10

117. A point z has been plotted in the complex plane,
as shown in figure below.

The plot of the complex number y = 1
z

is

(a) (b)

(c) (d)

118. An open loop system represented by the transfer

function G(s) = 
 

   
1

2 3

s

s s


   is

(a) stable and of the minimum phase type
(b) stable and of the non-minimum phase type
(c) unstable and of the minimum phase type
(d) unstable and of the non-minimum phase type

119. Let the Laplace transform of a function f(t) which
exists for t > 0 be F1(s) and the Laplace transform
of its delayed version f(t – ) be F2

*(s). Let F1
*(s)

be the complex conjugate of F1(s) with
the Laplace variable set as s =  + j.

If G(s) = 

*
2 1

2

1

F ( ).F ( )

F ( )

s s

s , then the inverse Laplace

transform of G(s) is

(a) an ideal impulse (t)
(b) an ideal delayed impulse (t – )
(c) an ideal step function u(t)
(d) an ideal delayed step function impulse u(t – )

120. The open loop transfer function G(s) of a unity
feedback control system is given as,

G(s) = 
 2

2
3
2

k s

s s

  
 



From the root locus, it can be inferred that when
k tends to positive infinity,
(a) three roots with nearly equal real parts exist

on the left half of the s-plane
(b) one real root is found on the right half of s-plane
(c) the root loci cross the j axis for a finite value

of k; k  0
(d) three real roots are found on the right half of

the s-plane

121. The matrix [A] = 
2 1

4 1
 
  

 is decomposed into a

product of a lower triangular matrix [L] and an
upper triangular matrix [U]. The properly
decomposed [L] and [U] matrices respectively are

(a)
1 0

4 1
 
  

&
1 1

0 2
 
  

(b)
2 0

4 1
 
  

&
1 1

0 1
 
 
 

(c)
1 0
4 1
 
 
 

&
2 1
0 1
 
  

(d)
2 0
4 3
 
  

&
1 0.5
0 1
 
 
 

122. A two-loop position control system is shown below.

The gain k of the Tacho-generator influences mainly

(a) peak overshoot

(b) natural frequency of oscillation

(c) phase shift of the closed loop transfer function
at very low frequencies ( 0)

(d) phase shift of the closed loop transfer function
at very high frequencies ( )

2012
123. A system with transfer function

G(s) = 
2( 9)( 2)

( 1)( 3)( 4)
s s

s s s
 

  
is excited by sin (t). The steady-state output of
the system is zero at
(a)  = 1 rad/s (b)  = 2 rad/s

(c)  = 3 rad/s (d)  = 4 rad/s
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124. The unilateral Laplace transform of f(t) is 
2

1

1s s 
.

The unilateral Laplace transform of t f(t) is

(a) –
2 2( 1)

s

s s 
(b) – 

2 2

2 1

( 1)

s

s s


 

(c) 2 2( 1)

s

s s  (d)
2 2

2 1

( 1)

s

s s


 

125. The state variable description of an LTI system
is given by

1

2

3

x

x

x

 
 
 
 





=
1

1

3

0 0

0 0

0 0

a

a

a

 
 
 
 

1

2

3

x

x

x

 
 
 
 

0

0

1

 
 
 
 

u, y = (1 0 0)
1

2

3

x

x

x

 
 
 
 

where y is the output and u is the input. The
system is controllable for

(a) a1  0, a2 = 0, a3  0

(b) a1 = 0, a2  0, a3  0

(c) a1 = 0, a2  0, a3 = 0

(d) a1  0, a2  0, a3 = 0

126. The feedback system shown below oscillates at
2 rad/s when

K (s + 1)

s  + as  + 2s + 13 2

R(s) +

–

Y(s)

(a) K = 2 and a = 0.75 (b) K = 3 and a = 0.75

(c) K = 4 and a = 0.5 (d) K = 2 and a = 0.5

127. The input x(t) and output y(t) of a system are

related as y(t) = 
–

( ) cos(3 )
t

x d


   . The system is

(a) time-invariant and stable

(b) stable and not time-invariant

(c) time-invariant and not stable

(d) not time-invariant and not stable

2013

128. The transfer function 2

1

V ( )
V ( )

s
s

 of the circuit shown

below is

(a)



0.5 1

1
s

s

10 k

100 F

V (s)2V (s)1

100 F

+

_

+

_

(b)



3 6
2

s
s

(c)



2
1

s
s

(d)



1
2

s
s

129. Assuming zero initial condition, the response y(t)
of the system given below to a unit step input u(t) is

U(s) 1
S

Y(s)

(a) u(t) (b) t u(t)

(c)
2

( )
2
t

u t (d) 1 ( )e u t

130. The impulse response of a system is
h(t) = t u(t). For an input u(t – 1), the output is

(a)
2

( )
2
t

u t (b)



( 1)

( 1)
2

t t
u t

(c)



2( 1)

( 1)
2

t
u t (d)




2 1
( 1)

2
t

u t

131. Which one of the following statements is NOT
TRUE for a continuous time causal and stable
LTI system?

(a) All the poles of the system must lie on the left
side of the j axis.

(b) Zeros of the system can lie anywhere in the s-
plane.

(c) All the poles must lie within |s|  = 1.

(d) All the roots of the characteristic equation
must be located on the left side of the j axis.

132. Two systems with impulse responses  h1 (t) and h2(t)
are connected in cascade. Then the overall impulse
response of the cascaded system is given by

(a) product of h1(t) and h2(t)

(b) sum of h1(t) and h2(t)

(c) convolution of h1(t) and h2(t)

(d) subtraction of h2(t) from h1(t)

133. A source vs(t) =V cos 100t has an internal impedance
of (4 + j3) If a purely resistive load connected to
this source has to extract the maximum power out
of the source, its value in  should be

(a) 3 (b) 4

(c) 5 (d) 7

134. The Bode plot of a transfer function G (s) is shown
in the figure below.

G
ai

n
(d

B
)

40

32

20

–81 10 100
 (rad/s)

0
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The gain (20 log|G(s)|) is 32 dB and –8 dB at 1
rad/s and 10 rad/s respectively. The phase is
negative for all . Then G(s) is

(a)
39.8

s
(b) 2

39.8

s

(c)
32
s

(d) 2

32

s
135. The signal flow graph for a system is given below.

The transfer function 
 
 

Y

U

s

s  for this system is

U(s) 1 S–1 S–1

1

Y(s)1

– 4

– 2

(a) 2

1

5 6 2

s

s s



 
(b) 2

1

6 2

s

s s



 

(c) 2

1

4 2

s

s s



 
(d) 2

1

5 6 2s s 
136. The impulse response of a continuous time system

is given by h(t) = (t – 1) + (t – 3). The value of
the step response at t = 2 is

(a) 0 (b) 1

(c) 2 (d) 3
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137. In the formation of Routh-Hurwitz array for a

polynomial, all the elements of a row have zero
values. This premature termination of the array
indicates the presence of

(a) Only one root at the origin

(b) Imaginary roots

(c) Only positive real roots

(d) Only negative real roots

138. The root locus of a unity feedback system is shown
in the figure

j

K = 0

–2 –1 
K = 0

The closed loop transfer function of the system is

(a)
C( ) K
R( ) ( 1)( 2)

s
s s s


 

(b)
C( ) K
R( ) ( 1)( 2) K

s
s s s




  

(c)
C( ) K
R( ) ( 1)( 2) K

s
s s s


  

(d)
C( ) K
R( ) ( 1)( 2) K

s
s s s


  
139. The state transition matrix for the system

       
        

       




1 1

2 2

1 0 1
1 1 1

x x
u

x x  is

(a)
0t

t t

e
e e

 
 
 

(b) 2

0t

t t

e
t e e

 
 
 

(c)
0t

t t

e
te e

 
 
 

(d)
0

t t

t

e te

e

 
 
 

140. For the transfer function

G(s) = 


  2

5( 4)
( 0.25)( 4 25)

s
s s s s

The values of the constant gain term and the
highest corner frequency of the Bode plot
respectively are

(a) 3.2, 5.0 (b) 16.0, 4.0

(c) 3.2, 4.0 (d) 16.0, 5.0

141. The second order dynamic system

 
X

PX Q
d

u
dt

y = RX

has the matrices P, Q and R as follows:

   
        

1 1 0
P Q R [0 1]

0 3 1

The system has the following controllability and
observability properties:

(a) Controllable and observable

(b) Not controllable but observable

(c) Controllable but not observable

(d) Not controllable and not observable

142. The signal flow graph of a system is shown below.
U(s) is the input and C(s) is the output

–a0

–a1

h0

h1

U(s) C(s)
1

1
s

1
s 11

Assuming, h1 = b1 and h0 = b0 – b1 a1, then input-

output transfer function, G(s) = C( )
U( )

s
s

of the system

is given by
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(a) G(s) =
0 1

2
0 1

b s b
s a s a


  (b) G(s) = 1 0

2
1 0

a s a
s b s b


 

(c) G(s) = 1 0
2

1 0

b s b
s a s a


 

(d) G(s) = 0 1
2

0 1

a s a
s b s b


 

143. A single-input single-output feedback system has
forward transfer function G(s) and feedback
transfer function H(s). It is given that
G(s).H(s)< 1. Which of the following is true about
the stability of the system?

(a) The system is always stable

(b) The system is stable if all zeros of G(s).H(s)
are in left half of the s-plane

(c) The system is stable if all poles of G(s).H(s)
are in left half of the s-plane

(d) It is not possible to say whether or not the
system is stable from the information given

144. The block diagram of a system is shown in the
figure

R(s) +– +–
–1

s G(s) s C(s)

If the desired transfer function of the system is
C( )
R( )

s
s = 2 1

s
s s 

Then G(s) is

(a) 1 (b) s

(c) 1/s (d) 3 2 2
s

s s s


  
145. Consider the system described by following state

space equations

1 1

2 2

0 1 0
;

1 1 1

x x
u

x x
      

              


  y = [1 0]

1

2

x

x
 
 
 

If u is unit step input, then the steady state error
of the system is

(a) 0 (b)
1
2

(c)
2
3

(d) 1

146. The magnitude Bode plot of a network is shown
in the figure

|G(j )|
dB


0
1
3

1 log10

Slope 20 dB/decade

The maximum phase angle m and the
corresponding gain Gm respectively, are

(a) –30 and 1.73dB (b) –30 and 4.77dB

(c) +30 and 4.77dB (d) +30 and 1.73dB
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147. For the signal–flow graph shown in the figure,

which one of the following expressions is equal

to the transfer function 
1

2 X ( ) 0

Y( )
X ( )

s

s
s


.

Y(s)
G21

–1

G1

X1(s) X2(s)

–1

(a)
1

2 1

G
1 G (1 G )  (b)

2

1 2

G
1 G (1 G ) 

(c)
1

1 2

G
1 G G (d)

2

1 2

G
1 G G

148. A Bode magnitude plot for the transfer function
G(s) of a plant is shown in the figure. Which one
of the following transfer functions best describes
the plant?

20 log|G(j2 )f

20
0

–20

0.1 1 10 100 1k 10k 100k f (Hz)

(a)
1000( 10)

1000
s

s



(b)

10( 10)
( 1000)

s
s s




(c)
1000

10 ( 10)
s
s s


 (d)
1000

10( 10)
s

s



149. In the signal flow diagram given in the figure, u1

and u2 are possible inputs whereas y1 and y2 are
possible outputs.When would the SISO system
derived from this diagram be controlable and
observable ?

5

u1

1

1

1/s
x1 y1

u2

y2

x2
1/s

1

2

–1

1
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(a) When u1 is the only input and y1 is the only
output

(b) When u2 is the only input and  y1 is the only
output

(c) When u1 is the only  input and  y2 is the only
output

(d) When u2 is the only input and  y2 is the only
output

150. Find the transfer function 
Y( )
X( )

s
s  of the system

given below.

+
G1

G2

H

–
+

+

+
–

X(s)
Y(s)

Y(s)

(a)
1 2

1 2

G G
1 HG 1 HG


  (b)

1 2

1 2

G G
1 HG 1 HG


 

(c)
1 2

1 2

G G
1 H(G G )


  (d)

1 2

1 2

G G
1 H(G G )


 

151. The transfer function of a second order real
system with a perfectly flat magnitude response
of unity has a pole at (2 – j3). List all the poles
and zeroes.

(a) Poles at (2 ± j3), no zeroes

(b) Poles at (±2 – j3), one zero at origin

(c) Poles at (2 – j3), (– 2 + j3), zeroes at (– 2 – j3),
(2 + j3)

(d) Poles at (2 ± j3), zeroes at (–2 ± j3)

152. The open loop poles of a third order unity feedback
system are at 0, –1, –2. Let the frequency
corresponding to the point where the root locus
of the system transits to unstable region be K.
Now suppose we introduce a zero in the open loop
transfer function at –3, while keeping all the
earlier open loop poles intact. Which one of the
following is TRUE about the point where the root
locus of the modified system transits to unstable
region?

(a) It corresponds to a frequency greater than K

(b) It corresponds to a frequency less than K

(c) It corresponds to a frequency K

(d) Root locus of modified system never transits
to unstable region

153. Nyquist plot of the functions G1(s) and G2(s) are
shown in figure.

0

Im

 = 

ReG (s)1



 = 

Im 

Re

G (s)2

Nyquist plot of the product of G1(s) and G2(s) is

(a)

 = 0

Re

Im


(b)

Im

Re1

(c)

Im

Re
(d)

Im

Re







0

154. An open loop transfer function G(s) of a system is

G(s) = 
K

( 1)( 2)s s s 
For a unity feedback system, the breakaway point
of the root loci on the real axis occurs at,

(a) – 0.42 (b) – 1.58

(c) – 0.42 and –1.58 (d) None of the above

2016

155. The transfer function of a system is 
Y( )

.
R( ) 2

s s
s s




The steady state output y(t) is A cos(2t + ) for the
input cos(2t). The values of A and , respectively
are

(a)
1

, 45
2

  (b)
1

, 45
2

 

(c) 2, 45  (d) 2, 45 
156. The phase cross-over frequency of the transfer

function G(s) = 3

100
( 1)s 

 in rad/s is

(a) 3 (b)
1

3

(c) 3 (d) 3 3
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157. Consider the following asymptotic Bode magnitude
plot ( is in rad/s).

Which one of the following transfer functions is
best represented by the above Bode magnitude plot?

(a) 2

2
(1 0.5 )(1 0.25 )

s
s s  (b)

4(1 0.5 )
(1 0.25 )

s
s s




(c)
2

(1 2 )(1 4 )
s

s s  (d) 2

4
(1 2 )(1 4 )

s
s s 

158. Loop transfer function of a feedback system is

G(s)H (s) = 2

3
( 3)
s

s s



 . Take the Nyquist contour

in the clockwise direction. Then the Nyquist plot
of G(s) encircles –1 + j0

(a) once in clockwise direction

(b) twice in clockwise direction

(c) once in anticlockwise direction

(d) twice in anticlockwise direction

159. The value of the integral sin 2
2

t
dt

t





 
    is equal to

(a) 0 (b) 0.5

(c) 1 (d) 2

160. Let P = 
3 1

1 3
 
 
 

. Consider the set S of all vectors

x

y
 
 
 

 such that a2 + b2 = 1 where 
a

b
 
 
 

 = P .
x

y
 
 
 

Then S is

(a) a circle of radius 10

(b) a circle of radius 
1

10

(c) an ellipse with major axis along 
1

1
 
 
 

(d) an ellipse with minor axis along 
1

1
 
 
 

161. The open loop transfer function of a unity feedback
control system is given by

   
K( 1)

G( ) ,K 0,T 0
1 T 1 2

s
s

s s s


  
 

The closed loop system will be stable if,

(a)
 4 K 1

0 T
K 1


 


(b)

 4 T 2
0 K

T 2


 



(c)
T 2

0 K
T 2


 


(d)
 8 K 1

0 T
K 1


 


162. A second-order real system has the following

properties :

A. the damping ratio  = 0.5 and undamped
natural frequency n = 10 rad/s,

B. the steady state value of the output, to a unit
step input, is 1.02.

The transfer function of the system is

(a) 2

1.02

5 100s s 
(b) 2

1.02

10 100s s 

(c) 2

100

10 100s s 
(d) 2

102

5 100s s 
163. The gain at the breakaway point of the root locus

of a unity feedback system with open loop transfer

function G(s) = K
( 1)( 4)

s
s s 

 is

(a) 1 (b) 2

(c) 5 (d) 9

2017
164. A closed loop system has the characteristic

equation given by s3 + Ks2 + (K + 2)s + 3 = 0. For
this system to be stable, which one of the
following conditions should be satisfied?

(a) 0 < K < 0.5 (b)  0.5 < K < 1

(c) 0 < K < 1 (d)  K > 1

165. The transfer function of a system is given by,

0

1

( )
( )

V s
V s  = 

1
1

s
s




. Let the output of the system be

v0(t)= Vm sin (t + ) for the input, vi(t)= Vm sin
(t). Then the minimum and maximum values of
 (in radians) are respectively

(a)
2


 and 
2


(b)
2


 and 0

(c) 0 and 
2


(d) – and 0

166. The transfer function of the system Y{s)/U(s)
whose state-space equations are given below is:

1

2

( )

( )

x t

x t
 
 
 


 = 

1

2

( )1 2 1
( )

( )2 0 2

x t
u t

x t
    

    
    

y(t) =   1

2

( )
1 0

( )

x t

x t
 
 
 
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(a) 2

( 2)
( 2 2)

s
s s


  (b) 2

( 2)
( 4)

s
s s


 

(c) 2

( 4)
( 4)

s
s s


  (d) 2

( 4)
( 4)

s
s s


 

167. In the system whose signal flow graph is shown
in figure, U1(s) and U2(s) are inputs. The transfer

function 
1

( )
( )

Y s
U s  is

(a)
1

2
1 2

k
JLs JRs k k 

(b)
1

2
1 2

k
JLs JRs k k 

(c)
1 2

2
2 1 2 2

( )
( )

k U R sL
JLs JR U L s k k U R

 
   

(d)
1 2

2
2 1 2 2

( )
( )

k U sL R
JLs JR U L s k k U R

 
   

2018
168. Consider a lossy transmission line with V1 and V2

as the sending and receiving end voltages,
respectively. Z and X are the series impedance
and reactance of the line, respectively. The
steady-state stability limit for the transmission
line will be

(a) greater than 
1 2V V
X (b) less than 

1 2V V
X

(c) equal to 
1 2V V
X           (d) equal to 

1 2V V
Z

169. Match the transfer functions of the second-order
systems with the nature of the system given
below.

Transfer functions Nature of system

P. 2
15

s 5s 15 
I. Overdamped

Q.
2

25

s 10s 25 
II. Critically damped

R. 2
35

s 18s 35 
III. Underdamped

(a) P-I, Q-II, R-III (b) P-II, Q-I, R-III

(c) P-III, Q-II, R-I (d) P-III, Q-I, R-II

170. The number of roots of polynomial, s7 + s6 + 7s5 +
14s4 + 31s3 + 73s2 + 25s + 200, in the open left half
of the complex plane is
(a) 3 (b) 4
(c) 5 (d) 6

2019
171. The characteristic equation of a linear time-

invariant (LTI) system is given by

4 3 2(s) s 3s 3s s k 0      

The system BIBO stable if

(a) k > 3 (b) 0 < k < 
8
9

(c) 0 < k < 
12
9

(d) k > 6

172. A system transfer function is

H(s) = 
2

1 1 1
2

2 2 2

a s b s c

a s b s c

 

 
.

If a1 = b1 = 0, and all other coefficients are positive,
the transfer function represents a

(a) high pass filter (b) notch filter

(c) low pass filter (d) band pass filter

173. The open loop transfer function of a unity feedback
system is given by

G(s) = 
0.25se

,
s



In G(s) plane, the Nyquist plot of G(s) passes
through the negative real axis at the point.

(a) (–1.5, j0) (b) (–0.5, j0)

(c) (–0.75, j0) (d) (–1.25, j0)

174. The asymptotic Bode magnitude plot of a minimum
phase transfer function G(s) is shown below.

Consider the following two statements.

Statement I : Transfer function G(s) has three
poles and one zero.
Statement II : At very high frequency ( ),

the phase angle   3
G j

2


   
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Which one of the following option is correct?

(a) Statement I is false and statement II is true.

(b) Both the statements are true.

(c) Both the statements are false.

(d) Statement I is true and statement II is false.
175. The transfer function of a phase lead compensator

is given by D(s) = 

1
3 s

3T
1

s
T

   
   

The frequency (in rad/sec), at which D(j) is
maximum, is

(a) 23T (b) 2

3
T

(c) 3T (d) 2

1
3T

176. Consider a state-variable model of a system

1 1

2 2

x x0 1 0
r

x x2
      

                


 ; 

1

2

x
y [1 0]

x
 

  
 

Where y is the output, and r is the input. The

damping ratio  and the undamped natural

frequency n(rad/sec) of the system are given by

(a) n;


    


(b) n;


    


(c) n;      (d) n;


    


2020
177. Which of the options is an equivalent

representation of the signal flow graph shown here

1 a d

e

c

1

(a)

e

1 1a(d + c)

(b)

e

1 1(a + c)d

(c)

e

1 1
d

1 – cd
a

(d)

e

1 1
c

1 – cd
a

178. Consider a permanent magnet dc (PMDC) motor
which is initially at rest. At t = 0, a dc voltage of
5 V is applied to the motor. Its speed monotonically
increases from 0 rad/s to 6.32 rad/s in 0.5 s and
finally settles to 10 rad/s. Assuming that the
armature inductance of the motor is negligible,
the transfer function of the motor is

(a)
10

0.5s 1
(b)

2
0.5s 1

(c)
2

s 0.5
(d)

10
s 0.5

179. Which of the following options is correct for the
system shown below?

1
s + 1

1

s2–+

20
s + 20

R(s) Y(s)

(a) 4th order and stable

(b) 3rd order and stable

(c) 4th order and unstable

(d) 3rd order and unstable

180. Consider a negative unity feedback system with
the forward path transfer function

2

3 2
s s 1

s 2s 2s K
 

  
, where K is a positive real

number. The value of K for which the system will
have some of its poles in the imaginary axis is ____.

(a) 9 (b) 8

(c) 7 (d) 6

2021
181. For the closed-loop system shown, the transfer

function 
E(s)
R(s)  is

(a)
G

1 GH
(b)

GH
1 GH

(c)
1

1 GH
(d)

1
1 G
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2022
182. The transfer function of a real system, H(s), is

given as : H(s) = 


 2

As B

s Cs D
, where A, B, C and

D are positive constants. This system cannot
operate as
(a) low pass filter.       (b) high pass filter.
(c) band pass filter.     (d) an integrator.

183. The Bode magnitude plot of a first order stable
system is constant with frequency. The
asymptotic value of the high frequency phase,
for the system, is –180°. This system has

(a) one LHP pole and one RHP zero at the same
frequency.

(b) one LHP pole and one LHP zero at the same
frequency.

(c) two LHP poles and one RHP zero.
(d) two RHP poles and one LHP zero.

184. The open loop transfer function of a unity gain
negative feedback system is given by

G(s) = 2
k

s 2s 5 
. The range of k for which the

system is stable, is
(a) k > 3 (b) k < 3
(c) k > 5 (d) k < 5

185. The open loop transfer function of a unity gain
negative feedback system is given as

1
G(s)

s(s 1)



The Nyquist contour in the s-plane encloses the
entire right half plane and a small neighbourhood
around the origin in the left half plane, as shown
in the figure below. The number of encirclements
of the point (–1 + j0) by the Nyquist plot of G(s),
corresponding to the Nyquist contour, is denoted
as N. Then N equals to

(a) 0 (b) 1

(c) 2 (d) 3

186. The damping ratio and undamped natural
frequency of a closed loop system as shown in
the figure, are denoted as  and n, respectively.
The values of  and n are

      

(a)  = 0.5 and n = 10 rad/s

(b) = 0.1 and n = 10 rad/s

(c)  = 0.707 and n = 10 rad/s

(d)  = 0.707 and n = 100 rad/s

2023
187. For the block diagram shown in the figure, the

transfer function 
Y(s)
R(s)

 is

(a)
2s 3
s 1



(b)
3s 2
s 1



(c)
s 1

3s 2



(d) 3s 2
s 1



188. In the Nyquist plot of the open-loop transfer
function

G(s)H(s) = 
3s 5
s 1



corresponding to the feedback loop shown in the
figure, the infinite semi-circular arc of the Nyquist
contour in s-plane is mapped into a point at

(a) G(s) H(s) =  (b) G(s)H(s) = 0

(c) G(s) H(s) = 3 (d) G(s) H(s) = –5
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189. Consider a unity-gain negative feedback system
consisting of the plant G(s) (given below) and a
proportional-integral controller. Let the
proportional gain and integral gain be 3 and 1,
respectively. For a unit step reference input, the
final values of the controller output and the plant
output, respectively, are

G(s) = 1
s 1

(a) ,  (b) 1, 0

(c) 1, –1 (d) –1, 1

190. Consider a lead compensator of the form

s
1

K(s) , 1, 0
s

1


    




The frequency at which this compensator
produces maximum phase lead is 4 rad/s. At this
frequency, the gain amplification provided by the
controller, assuming asymptotic Bode-magnitude
plot of K(s), is 6 dB. The values of , , respectively,
are

(a) 1, 16 (b) 2, 4

(c) 3, 5 (d) 2.66, 2.25

NUMERICAL TYPE QUESTIONS

1992
1. For what range of K is the following system

(Figure) asymptotically stable ? Assume K  0

+

–

s – 5
s + 4

K

1994
Direction (Q. 2) : Indicate whether the following
statement is TRUE or FALSE. Write the indicating
work fully and legibly. A ‘FALSE’ answer must be
accompanied by a very brief (preferably one or two
sentences) justification.
2. The closed loop system, of Figure, is stable if the

transfer function T (s) = 
C
R

( )
( )
s
s  is stable.

3. The number of positive real roots of the equation
s3 – 2s + 2 = 0 is __________________

1995
4. Closed loop stability implies that [1 + G(s) H(s)]

has only _________ in the left half of the
s-plane.

2014
5. For the given system, it is desired that the system

be stable. The minimum value of  for this
condition is _________.

C(s)R(s)
(s+ )

s³+(1+ )s² + ( –1)s+(1– ) 
+–

6. The Bode magnitude plot of the transfer function

G(s) = 
K(1 0.5 )(1 )

1 (1 ) 1
8 36

s as
s s

s bs

 
        
   

 I shown below:

Note that – 6 dB/octave = – 20dB/decade. The

value of 
K
a

b
is ______________

0
0.01 2 4 8 24 36

0dB / Octave
dB

–6dB / Octave
6dB / Octave

0dB / Octave

–6dB / Octave

–12dB / Octave

(rad /s)

7. The closed-loop transfer function of a system is

T(S) =  2

4
.

( 0.4 4)s s  The steady state error due

to unit step input is ____.

8. A system with the open loop transfer function

G(s) =   2

K
( 2)( 2 2)s s s s

is connected in a negative feedback configuration
with a feedback gain of unity. For the closed
loop system to be marginally stable, the value of
K is ____

2015
9. An open loop control system results in a response

of e–2t(sin5t + cos5t) for a unit impulse input. The
DC gain of the control system is ______.
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2016
10. Consider a linear time-invariant system with

transfer function

H(s) =  
1

1s 

If the input is cos (t) and the steady state
output is A cos (t + ), then the value of A is _____.

11. The line integral of the vector field

 2 2ˆF 5 3 2xzi x y j x zk   

along a path from (0, 0, 0) to (1, 1, 1)
parameterized by (t, t2, t) is _________.

2017
12. Consider the unity feedback control system

shown. The value of K that results in a phase
margin of the system to be 30 is _______. (Give
the answer up to two decimal places.)

13. For a system having transfer function G(s) = 
1

1
s

s
 
 ,

a unit step input is applied at time  t = 0. The
value of the response of the system at t = 1.5 sec
(rounded off to three decimal places) is______.

2018
14. Consider a unity feedback system with forward

transfer function given by

     
1

G s
s 1 s 2


 

The steady-state error in the output of the system
for a unit-step input is _____ (up to 2 decimal places).

15. The unit step response y(t) of a unity feedback
system with open-loop transfer function G(s)H(s)

   


 2
K

s 1 s 2   is shown in the figure. The

value of K is _________ (upto 2 decimal places).

2020
16. Consider a negative unity feedback system with

forward path transfer function

G(s) = 
K

,
(s a)(s b)(s c)  

 where K, a, b, c are

positive real numbers. For a Nyquist path
enclosing the entire imaginary axis and right half
of the s-plane in the clockwise direction, the
Nyquist plot of [1 + G(s)], encircles the origin of
[1 + G(s)]-plane once in the clockwise direction
and never passes through this origin for a certain

value of 'K'. Then the number of poles of 
G(s)

1 G(s)
lying in the open right half of the s-plane is _____.

2021

17. The Bode magnitude plot for the transfer function 
o

i

V (s)
V (s)  of the circuit is as shown. The value of R is _____

. (Round off to 2 decimal places.)
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18. Consider a closed-loop system as shown,

p
14.4G (s)

s(1 0.1s)


  is the plant transfer function

and Gc(s) = 1 is the compensator. For a unit-step
input, the output response has damped
oscillations. The damped natural frequency is
_________ rad/s. (Round off to 2 decimal places).

19. In the given figure, plant

Gp(S) = 
2.2

(1 0.1s)(1 0.4s)(1 1.2s)    and compensator

Gc(S) = 
1

2

1 T sK
1 T s
 
  

.

The external disturbance input is D(s). It is desired
that when the disturbance is a unit step, the
steady-state error should not exceed 0.1 unit. The
minimum value of K is _________.

(Round off to 2 decimal places.)

20. The state space representation of a first-order
system is given as

x x u
y x
  




where, x is the state variable, u is the control input
and y is the controlled output. Let u = – Kx be the
control law, where K is the controller gain. To place
a closed-loop pole at –2, the value of K is _______.

ANSWERS
MCQ Type Questions

1. (b) 2. (b) 3. (a) 4. (a) 5. (a) 6. (c) 7. (a) 8. (*) 9. (a) 10. (a)
11. (b) 12. (c) 13. (c) 14. (d) 15. (c) 16. (b) 17. (b) 18. (d) 19. (b) 20. (d)
21. (b) 22. (c) 23. (a) 24. (a) 25. (c) 26. (a) 27. (d) 28. (c) 29. (a) 30. (c)
31. (c) 32. (b) 33. (d) 34. (a) 35. (d) 36. (c) 37. (a) 38. (c) 39. (d) 40. (a)
41. (c) 42. (a) 43. (b) 44. (c) 45. (c) 46. (c) 47. (b) 48. (b) 49. (a) 50. (b)
51. (d) 52. (c) 53. (a) 54. (a) 55. (b) 56. (a) 57. (d) 58. (a) 59. (c) 60. (a)
61. (b) 62. (a) 63. (d) 64. (c) 65. (c) 66. (b) 67. (a) 68. (d) 69. (d) 70. (b)
71. (c) 72. (c) 73. (a) 74. (d) 75. (c) 76. (c) 77. (b) 78. (c) 79. (d) 80. (b)

81. (a) 82. (c) 83. (b) 84. (d) 85. (a) 86. (b) 87. (c) 88. (a) 89. (d) 90. (b)
91. (d) 92. (b) 93. (d) 94. (d) 95. (a) 96. (a) 97. (d) 98. (b) 99. (a) 100. (c)

101. (c) 102. (c) 103. (d) 104. (d) 105. (d) 106. (b) 107. (d) 108. (d) 109. (a) 110. (c)
111. (d) 112. (a) 113. (c) 114. (c) 115. (a) 116. (a) 117. (d) 118. (b) 119. (b) 120. (a)
121. (d) 122. (a) 123. (c) 124. (d) 125. (d) 126. (a) 127. (b) 128. (d) 129. (b) 130. (c)
131. (c) 132. (c) 133. (c) 134. (b) 135. (a) 136. (b) 137. (b) 138. (c) 139. (c) 140. (a)
141. (c) 142. (c) 143. (a) 144. (b) 145. (a) 146. (c) 147. (b) 148. (d) 149. (b) 150. (c)
151. (d) 152. (d) 153. (b) 154. (a)   155. (b)    156. (a) 157. (a) 158. (a) 159. (d) 160. (c)

161. (c) 162. (b) 163. (a) 164. (d) 165. (d) 166. (d) 167. (a) 168. (b) 169. (c) 170. (a)

171. (b) 172. (c) 173. (b) 174. (a) 175. (d) 176.  (d) 177. (c) 178. (b) 179. (c) 180. (b)

181. (c) 182. (b) 183. (a) 184. (c) 185. (b) 186. (a) 187. (b) 188. (c) 189. (d) 190. (b)

Numerical Type Questions

1. (K 4/5) 2. (True) 3. (One) 4. (roots) 5. (0.618) 6. (0.75)

7. (0 to 0) 8. (5 to 5) 9. 0.241 10. (0.707) 11. (4.41) 12. (1.047)

13. (0.554) 14. 0.66 15. 8 16. (2 to 2) 17. (0.09 to 0.11)

18. (10.80 to11.00) 19. (9.50 to 9.60) 20. (1 to 1)
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EXPLANATIONS
MCQ TYPE QUESTIONS

1. Given :  G(s) = 1
1 2 3( )( )( )s s s  

Since the open-loop transfer function has no
poles at the origin, the Nyquist path is as shown
below :

s-plane

jw
jw

1

–jw
–jw

K


0

Path I :    G(j) = 
1

1 2 3( )( )( )j j j    

        G(j0) =   
1
6

1
6 189

Path II :   G(j) = 
1 1

3 0 3( ) (Re )j j
  R  

= e
– j30  0

Hence as  goes from – 90 to + 90 in path II,
G(j) goes from 270 to – 270 as shown below

j1mGH

R GHe

G(s)H(s) Plane
jw

–jw

j0

2.     

Y1 = U + X2H

Y2 = U + X1H

and X1 = GY1 = GU + GX2H

X2 = GY2 = GU + GX1H

and Y = X1 + X2

= 2GU + GH (X1 + X2)

= 2GU + GHY

or   Y =
2GU

1 GH

or
Y
U

=
2G

1 GH
3. Only (a) is a valid root loci since in (b), (c) and

(d) the root loci lies to the left of an even number
of zeros and poles.

4.  E(s) = X(s) – Y(s)H

= X(s) – 
G

1 GH
 H.X(s)

= X(s) 
1

1 GH

X(s) =
1
s

+

–

E(t)X Ys+1
s +5s+a2

G =

1
s+4H =

Hence E(s) =
1

1s( )GH

=
1 1

1
1

4 52
s s

s s s a( ) ( )



  

L

N

MMMM

O

Q

PPPP
The steady state error,

ess = lim ( )t t
 



= lim ( )
t

ss
 

E

= lim
t

1

1 1
4 52


  

s
s s s a( ) ( )

=
1

1
1

4a


 = 
4

4 1
a

a 
 = 0

or a = 0

5. (a) H(s) =
s
s

s
s s


 


 
1

1 1
1

1 1
1

h(t) = (t) – e–t u(t)

This matches best with (P)

(b) H(s) =
s

s( )1 2

h(t) = t e–t u(t)

This matches best with (Q)
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(c) H(s) = 2

1
1s s 

 = 
2

2 22
n

n ns s w


  
Comparing (1) and (2), we get

n = 1,

2n = 1,

  =
1
2

           h(t) = 



  n
ne tn

t

1
1

2
2


 . sin( )

=
1
3
4

3
4

1 2e t 









/ sin

This matches best with (S)

(d) H(s) =
1

12s 
h(t) = sin (t)

Such matches best with (R)
Hence,  a – P,  b – Q,  c – S,  d – R

6.

From the figure, x1 = – x1 + 3r(t)
The A matrix is (–1) and hence choice (c) is correct.

7. The transfer function of a phase–lead compensator
is

E
E

2

1

( )
( )
s
s =

1 1

1a

a s

s





T

T
b g

, a > 1

Zero is at s  = – 
1

aT
;

Pole is at s = – 
1
T

Hence choice (a) is correct, since a > 1.

8. a – R, b – S,c – Q, d – P

   9.
C
R

( )
( )
s
s =

2 1
2 1
( )

( ) ( )
s

s s


 
;

R (s) =
1
s

Hence C(s) =
2 1

1 2
( )

( ) ( )
s

s s


 

=
k
s
1 + 

k
s

k
s

2 3
1 3



,

expanding in partial fractions

k1 =
2 1

1 2
2

20
( )

( ) ( )
|s

s s s


 



 = – 1

k2 =
2 1

2
2 2

1 11
( )
( )

| ( )
( )

s
s s s







  = 4

k3 =
2 1

2
2 3
2 12

( )
( )

| ( )
( )

s
s s s







   =–3

Hence  C(s)  = 
1
s

+ 
4

1
3

2s s



andthe output c(t) = [– 1 + 4e–t –3e–2t]u(t).

10.  The transfer function G(s) is :

G(s) = C(sI – A)–1 B

(sI – A) 
s
s
0

0
4 1
3 1









 

 










  = 

s
s


 











4 1
3 1

(sI – A) =

s
s

s s


 











  

1 3
1 4
5 4 32  = 

s
s

s s

 












 

1 1
3 4

5 72

Hence G(s) 
[ ]1 0 1 3

1 4
5 72

s
s

s s


 











 
 

1
1
1

















=
[ ]s
s s

 
 










1 1
5 7

1
12  

s
s s


 5 72

11. C(t) = – te –t + 2e –t,
(t  0)

C(s) = – 
1
1 2( )s 

 + 
2
12s 

 = 
2 1

1 2
s
s


( )

C(s) =
G

G
( )

( )
s

s1  ,

G(s) =
C

C
( )

( )
s

s1 
 = 

2 1
1

1 2 1
1

2

2

s
s
s
s








( )

( )

 = 
2 1

2
s
s


12.
C
R

( )
( )
s
s

=
G

G
( )

( )
,

s
s1 

G
G
( )

( )
s

s1 
=

1
1

1 1
1

s s

s s

( )

( )






= 
1

12s s 

n = 1,  n = 
1
2 ,   = 

1
2

Mp = e  1 2
 = e( / )/ (1/ )  2 1 4

= e  / 3
 = 0.163

14.
C
R

( )
( )
s
s

 = 
1

1  s
j
j

,
( )
( )

C
R




 = 
1

1  j

From r(t) sin t,   = 1, 
C
R

( )
( )
j
j

 =

1
1 1

 = 1
2

C
R

( )
( )

j
j



= – tan–1 1 = – 

4

 SS value of c(t) =
1
2  sin t 








4
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15.
C
R

( )
( )
s
s

 =

K

K
s s

s s
as

( )

( )
( )








2

1
2

1

=
K

Ks s as( ) ( )  2 1

=
K

K Ks s a2 2  ( )

K = n
2 = 16

2n = 2 + Ka = 2  0.7  4 = 5.6

 a =
5 6 2

16
. 

 = 0.225

16. Step response is integral of unit impulse response

u(t) = o
t
 ( – 4e –t + 6e –2t) dt

= [4e –t – 3e –2t]t
0

= 4e –t – 3e –2t – 1.
18. Linear time invariant control system is shown

as below.
X (t) Y (t)
r (t) C (t)

We know, C(S) = H(S) R(S)

  Output is H(S) R(S) e–S = C1(S)

r(t)

R(s)e(s)

e(s) H(s)

or C1(S) = e–S  C(S)

 C1(t) =C(t) u (t – 1)
19. For a linear control system with no poles in R.

H. S. of S-plane including roots on j axis with
bounded input, the output may be unbounded.

20. System becomes fast and hence tr is less
21. Solution exists Ax = b, b  should be in column

space of A.

22.  A = 

 


 

















2 2 3
2 1 6
1 2 0

; X1 = 

1
2
1

















From (A – I)  X1 = 0

  
 

  

















2 2 3
2 1 6

1 2





 

1
2
1

















 = 0

 or

   
 

  

















2 4 3
2 2 6
1 4





 = 0

or    = 5

23. Sum of eigen values of A
= sum of diagonal element
= 2 + 1 + 3 + 4 = 10

24. Let output of summer be K (S)

K (S) =
C(S)

G G2 3


C(S)

G G2 3
= G1 R(S)

C(S)H
G

1

3


L
NM

O
QP  – C (S) H2

 C (S) [1 + H1 G1 G2 + H2 G2 G3]

= G1 G2 G3 R (S).
25. Routh Hurwitz interion

S4 2 3 7
S3 1 5
S2 –7 7
S1 6
S0 7
Since sign changes twice, therefore 2 roots in
RHP.

26. det A =|A| = 5 [3 – 0] – 0 [0 – 2] + 2 [0 – 6]
=15 – 12 = 3

       
3 0
0 1

 – 
0 2
0 1

    
0 2
3 0

Adj A = – 
0 0
2 1

 
5 2
2 1

 – 
5 2
0 0

  
0 3
2 0  – 

5 0
2 0    

5 0
0 3

Adj A =

3 0 6
0 1 0
6 0 15





L

N
MMM

O

Q
PPP

 A–1 =
A A
|A|

dj
= 

1
3

3 0 6
0 1 0
6 0 15





















=

1 0 2
0 1 3 0
2 0 5





















28. ST
G = – 

GH
1 GH

 , GH >> 1

= – 1 (Sensitivity with change in H)

SGT =
1

1 GH
 (Sensitivity with change in G)

29.

R( )s
–

+
 G( )s

C( )s

H( )s
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T(s) =
C( )
R( )

s
s

=
G ( )

1 G( )H( )
s

s s

For H(s) = 1 [unity feedback system]

E(s) =
R( ) C( )

R( )
s s

s


 = 
1

1 G( )s

steady-state error, Gss = 0s
lt
  sE(s)

= 0s
lt


SR( )
1 G( )

s
s

For, G(s) = 1 2

1 2

1 ( Z ) ( Z )
( P ) ( P )
s s

s s s
 
 

 [Type -1 system]

and R(s) =
1
s

[step function]

Gs =
0 1 s

s
lt

k
= 0 [k is a constant]

30.    y (t) = te–t

y (s) =  ( )y t  = 
2

1

( 1)s




T (s) =
Y( )
R( )

s
s

=
2( 1)

s

s 

[R(s) = 
1

,
s

unit- step function].

31. Constructing routh- array, we get
4

3

2

1

0

2 3 105
1 5 05
7 105

45 105
7 7

520 05
45



As, there are no. of sign change is the first row
is 2, therefore no. of roots in Rh-s plane is two.

32. Damping ratio =0.6, % overshoot

MP= 2/ 1 100re r    
= 10%

33. Phase-angles  = D(j) = tan–1 (0.5) – tan–1(0.05 )
 will be maximum when

d
d



= 0 =
2 2

0.5 0.05

1 (0.5 ) 1 (0.05 )


   
 10 + 10 (0.05 )2  = 1 + (0.5)2

 2 =
9

0.25 0.025
    = 40
= 6.32 rad/sec.

and,  = tan–1 (6.32  0.5) – tan–1 (0.05  6.32)
          = 55

34. Phase margin :

  = 180 – tan–1  – tan–1 0.5 – 90

= 180 – tan–1 (0.466) – tan–1 (0.233) – 90
= 51.9

35. For  = 0.3, value of K comes out a complex
number, so it doesn’t exist.

36. a = + 1.42
GM (gain margin) = – 20 log a

Since a > 1,
So GM will be – ve and system unstable,

Now, G (j) H (j) =
1 T

T
1

2



j

j j


 ( )1
[assuming one pole in RHS plane].

G (j) H (j) = – 90– tan T – tan T2

At  = 0,G (j) H (j) = – 90
At  = G (j) H (j) = – 270
both the conditions satisfies by polor plot given.

37. X =



L
NM

O
QP

3 1
0 2  X = AX

Its solution is,

X(t) = £ [ 1 sI A] 1  X (0)

=  £–1 
s

s
 


L
NM

O
QP
3 1

0 2

1

 
10
10
L
NM
O
QP

=
£

( ) ( )





L
NM

O
QP

 

L

N

M
MM
MM

O

Q

P
PP
PP

1

2 1
0 3

2 3

s
s

s s  X (0)

=

£ £ .

£

 



  
L
NM

O
QP


L
NM
O
QP

L

N

MMMM

O

Q

PPPP

1 1

1

1
3

1
2

1
3

0 1
2

s s s

s
 X (0)

=
e e e

e

t t t

t

  


L

NMM
O
QPP

3 2 3

20  
10
10
L
NM
O
QP

Nor, Xss =  lim
t

 X(t)

=  lim
t

20 10
10

3 2

2
e e

e

t t

t

 






L
NMM

O
QPP

= 
0
0
L
NM
O
QP
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38. Inductance of the circuit/km,

L = 4  10–7ln 
D
r '  mH/km

= 4  10–7 ln 
1

0.7788 5 10 3  

= 2.381 mH/km.
 Inductance = 2.381 mH/km  10

= 23.81 mH
39. Since at = 2 and = 25, slope changes from 40

dB/dec to –60 dB/dec at both the valve. So there
are poles at = 2 and = 25. Also at = 0.1 slope is
– 40 dB/dec. It means, there is two poles at origin.
Hence the transfer function, should be of the form,

T(s) =
K( 5)

( 2)( 25)2
s

s s s


 

Now, 54 = 20 log 
5

01 502
K

( . ) 
or K = 50.

Thus T(s) =
50 5

2 252
( )

( ) ( )
s

s s s


 

Common Data Q. (40 – 42)

40. Given, G(s) =
10,000
( + 10)2s s

H(s) = 1

G (s) H (s) =
10,000

S (S + 10)2

G (j) H (j) =
10,000
( + 10)2j j 

(a) G (j) in decibels
= 20 log | G (j) H (j) | =20

= 20 10 000
20 10 20 2log ,

{ | | | | }j j

=
10,000

20 log
10000

 = 0 db.

41. First, gain cross over frequency,  = 1 should
be calculated.
By definition,
As, | ( ) ( ) |G Hj j    1

= 1


10 000
101 1

2
,

| | |j j 
= 1

 10,000 = 1 (1
2 + 100)

Gives 1 = 20 rad/sec.
Now, phase margin,

 = G (j) H (j) | = 1
 + 180

=     90 2
10

1801 1tan 
= – 36.86

42. For, gain margin, first calculate phase-cross over
frequency,  = 2.

As per definition,    G H( ) ( ) |j j   2
180

 – 90 – 2 . tan–1 
2

10
= – 180

 tan1 2

10


= 45

or 2 = 10 rad/sec.
Now, Gain margin, GM = – 20 log a

where a = G H( ) ( )j j    2

 GM = 


20 10 000
1002 2

2log ,
( ) 

=  20
10 000
10 200

log
,
,

= –13.97 dB

47. X = 2 3
0 5
L
NM
O
QP  X + 1

0
L
NM
O
QP  u

B = 1
0
L
NM
O
QP ,  A = 2 3

0 5
L
NM
O
QP

AB = 2 3
0 5
L
NM
O
QP  

1
0
L
NM
O
QP  = 2

0
L
NM
O
QP

 [B : AB] = 1 2
0 0
L
NM
O
QP

This is not a 2  2 matrix, hence system is
uncontrollable

Now [sI – A] =
s

s
0

5
L
NM
O
QP  – 

2 3
0 5
L
NM
O
QP

=
s

s
 


L
NM

O
QP

2 3
0 5  = (s – 2) (s – 5)

Two roots on positive half of the y-axis, hence
unstable

48. G(s) =
K

2s

Angle of asymptote, A =



2 1 180

2 0
q +b g

 = ± 90

Hence root locus can be

50. X = 2 0
0 4
L
NM
O
QP  X + 1

1
L
NM
O
QP  u ; Y = [4 0] X

[sI – A] =
s

s



L
NM

O
QP

2 0
0 4

[sI – A]–1 = (s) 

1
s

s





L

N

M
MM
M

O

Q

P
PP
P

2
0

0 1
4

Y(s) =  (s) C (s) . X (s)
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Y )
X

(
( )
s
s

=

1
s

s





L

N

M
MM
M

O

Q

P
PP
P

2
0

0 1
4

 [4, 0] = 
4

2s 

With input as  (t), L [ (t)] = 1

Y(s) =
4

2s 
 · [1] = 

4
2s 

 Y(t) = 4 e2 t

52. Taking Laplace-transform of both-sides, we have

[s2 + 6s × 5] X(s) =12
1 1

–
+2s s

 
 
 

 = 
24

( 2)s s 

or X(s) = 2

24

( 6 5) ( 2)s s s s  

then, Lim ( )
t

x t


=
0

Lim X( )
s

s s


= 20

24
Lim

( 6 5) ( 2)s s s s   
= 2.4

53.  = 1 1tan tan
a b

  


For lead compensator,  > 0
then, b > a

54. The state of the system at time t is,
X(t) = [sI – A]–1

 X(0) = (t)X(0)

=
e

e

t

t





L
NMM

O
QPP
L
NM
O
QP

2 0

0

2
3

 = 2

3

2e

e

t

t





L
N
MM
O
Q
PP

At t = 1, X(1) =

2

1

2

3

e

e





 
 
  

 = 
0.271

1.100

 
 
 

55. T(s) =
C( )
R( )

s
s

 =
2

1
1

+ +
2 18
s

s

=
2

18

10 ( 1)s s 
 = 18

(3 1) (6 1)s s 

As, T(S) have the form, 
1 2

A
(J 1) (J 1) s s

The time - constant are J1 = 3 sec, J2 = 6 sec.

56.
Y( )
U( )

s
s = 2

45

16 60s s 
Steady-state error, ess = lim

0s 
sE(s)

= 0
lim
s   s [U(s) – Y(s)]

= lim
0s 

2

2

16 15

16 60

s s

s s

 

 

= 
1
4

 = 25%.

57.   The characteristic equation is,
1 + GH = 0

or      1 + 
45

( 15) ( 1)s s   =  0

or s2 + 16s + 60 = 0
or (s + 6) (s + 10) = 0
Thus, s = – 6,  s = – 10 are the roots.

58.
2

2

d

dt


= 

2B K K
V

J LJ LJ a
d
dt

  ...(i)

d
dt


= 1. 
d
dt


+ 0.       ...(ii)

From equations (i) and (ii), we get
2

2

d

dt
d
dt

 
 
 
 
 
 

= 

2 K
B/J K /LJ

VLJ
1 0 0

a

d
dt
                      

59.  The characteristics equation is,
1 + GH = 0

s3 + 6s2 + 8s + k = 0
Constructing routh-Hurwitz array

s

ks
ks
ks

3

2

1

1 8 0
6

48 

The system will be just unstable
k – 48 = 0 or k = 48.

60. GH| = 0.5a =– tan–1 
a


=  – tan–1 0.5 = 26.56
From the plot,

at  = 0. GH = 22.5
Then error = – 22.50 (– 26.56) = 4.06
At   =  0.5 a, 20 log|GH|

= 20 log k – 20 log |1 + j 0.5|
= 20 log k – 0.97

From the plot, 20 log|GH|= 20 log k
Then, error in dB gain = 0.97 dB

61. Forward path gain,P1 = 2

2

s
1 = 1

Individual loop gains = 
3
s
 

 
 

, 
12
s

 
 
 

, 2

18

s
 
 
 

P12 (Non-touching loop gain) = 36/s2

Then, T = 1 1

11 21 23 12

P
1 P P P P


   

    = 

2 2

2. /
15 18 36

1

s

s s s



  
 =  

2

2

15s 54s  

= 
s s 

2
( 6) ( 9)

 = 
1

27 1 1
6 9
s s       

   
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62. Phase margin,   = G H( ) ( )|j j     
1

180

= – 180° + 180° = 0°
[Since, at point (– 1, j0), G(j)]. H( )|j    

1
180

63. Initial value = lin F( )
s

s s


 = lin
s s s  

5

3 22
 = 0

64. Transfer function is derived as,

 Kt .
d
dt
 = e(t)

sKt . (s) = E(s)


E( )

( )
s
s

= sKt.

65. Constructing Routh-array,
s3    1 1 0
s2 – 4 6 0
s1   2 0
s0   6

Number of sign changes in the first column is
two, therefore the number of roots in the left
half s-plane is 2.

66. Constructing signal-flow graph as shown here,

         

Number of forward paths is 3 having path gains,

P1 =
1
2s

,

P2 = 1,

P3 =
1
s

There are no loops, then, transfer function is
given as,

 T  =
P P P1 1 2 2 3 3  


 

 = 
1

1
1

2s s
 

     =  
s s

s

2

2

1 
        [1 = 2 = 3 =  = 1]

67. Characteristic equation for this system is,
               |sI – A| = 0

or   
s

s




2
2 = 0

or s2 – 4 = 0
or   s  = ± 2.

68.  T(s) = 
C
R

( )
( )
s
s

= 
/ ( 2)

(1 P)
1

( 2)

k s s
k s
s s





 = 
k

s k s k2 (2 P )  

Now, k = n
2,

and (Pk + 2) = 2n

Then, k = 25
and P = 0.2.

69. C(s) = 
12 5 8

6 82 2

.

( )



 s
 =  

100

s 12s 1002  
Then, Output for unit step respoure

=
1
s

. 
100
12 1002s s 

and steady-state value = lin C( )
0s

s s


= lin
100

0 2s s s  12 100
 = 1

70. Y(s)= X(s) . 
s

s  1

Y(s)  =
1

( 1)
.

12s
s

s 

=
A B C

( ) ( ) ( )s j s j s





 1

         = 
1

2 1
1

( ) 
F
HG
I
KJj s j

 + 
1

2 1( )( ) j s j
 – 

1
2( 1)s 

Taking inverse Laplace transformation, we have

y(t) =
1

2 1( ) j
e jt  +

1
2 1( )



j
e jt   – 

1
2

e t

=
1
2

(sin t + cos t) – 
1
2

 e–t

=
1
2

sin (t + 45°) – 
1
2

 e–t

Then, steady state value = lin
t

 y(t)

=
1
2

 sin (t + 45°).

71. The value of  at which |G(j)| = 1 is given by,

1 =
( )


c

c

a 2

2

1
.......... (i)

Also   G( )|j
c

    + 180° = 45°

or     tan–1(c a) – 180° + 180° = 45°
or c a = 1
From equation (i), we have,

c = 21/4 = 1.189 rad/sec.

Then, a = 0.841.
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72. T( )j = 
2T( ) 4

( 1) ( 4)

j

j j

 

   
=0

 – 2 + 4 = 0,
  = 2 rad/sec

73. G(s) H(s) = 3

K
s

Characteristic equation is,
1 + G(s) H(s) = 0

 s3 + K = 0


Kd

ds
= 0

 3s2 = 0
 s = 0, 0
Note : In all other options, all breaking points
are not at origin.

74. G(j) = 2

( 1)
( )
j
j



 = 2

1 j 


 = 
2

1 1
 
 

For Gain Margin, complex part of G(j) = 0

 1


= 0

  = 

 Gain margin = 1
20log

G( )j
 = 

1
20 log

1


= 

75. 1 + G(s)H(s) = 0
 (1 – K)s + (1 + K) = 0
 s (1 – K) 0  1 – K > 0, 1 + K > 0
So,  K  < 1

76.
M( )s

R( )s Y( )s3/s 2
s  + 2

+ +
–

M(s) =  3R( ) R( ) Y( )s s s
s

 

and Y(s) = 
2 3 3

R( ) 1 Y( )
2

s s
s s s

        

 Y( )
R( )

s
s

= 2

2( 3)
2 6

s
s s


 

E(s) = R(s) – Y(s) = 2

2( 3)
1

2 6
s

s s
    

E(s) = 
2

2R( )
2 6
s

s
s s 

ess = 
s

s
0

Lt E( ) 0




77. G(s) H(s) = e
s

s0 25.

G(js) H(j) = 
  



cos . sin .0 25 0 25a f a f j

j

=  







sin . cos .0 25 0 25a f a fj

Imaginary part = 0

 


cos .0 25b g = 0

 
4

= 

2

,  = 2

 G H( ) ( )j j    2

=  F
HG
I
KJ





2

2
4

sin  =  
1
2

0 5.

78. Here,            T = 
Y( )
R( )

s
s

 = 
s

s s
K 0.366

( 1)



Since, P.M. = 180 + G(j) + (j)

60 = 
1 10.366

180 tan 90 tan
K

        
 

    1

0.366
Ktan
0.366

1
K



   
  
 

 = – 30

    
2

0.366 K
K 0.366


 

 = 
1

3


At cross-over frequency of 1 rad/sec,
we get K + 0.366 = 1.732 K – 0.634
 K = 1.366

79. P= 
3 2 2

0 2 1

0 0 1

 
  
  

The eigen-values corresponding to triangular
matrix are  = 3, – 2 and 1.

For finding eigen vector,   ˆA 1 x   = 0

1

2

3

3 2 2

0 2 1

0 0 1

x

x

x

     
        
       

 = 
0

0

0

 
 
 
  

For  = – 2,

1

2

3

5 2 2

0 0 1

0 0 3

x

x

x

   
   
   
      

 = 

0

0

0

 
 
 
  

or, 5x1 – 2x2 + 2x3 = 0
x3 = 0

3x3 = 0
If x2 = k (Assume),

5x1 – 2k = 0,

x1 = 
2
5

k

Then eigen vectors

1

2

3

x

x

x

 
 
 
  

= 

2
5
1

0

 
 
 
 
 
 
 

 = 
2

5

0

 
 
 
  
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80. F(z) = 
1

1z 
 = 

1
1

z z
z
 


 = 1
( 1)
z

z


 

 z–1[F(z)] = (t) – (– 1n) 1 nz
z a

z a
       



81. (sI – A)–1 = 
1

1
0 3
s

s


 
  

 = 
 Adj I – A

| I – A|
s

s

= 

3 1
0

1
0 3

s
s

s
s

  
 
 
 
  

=  

3 1

0
3

s

s
s s

  
 
 



= 
 

1 1
3

1
0

3

s s s

s

 
  
 
  

 (t) = L–1(sI – A)–1 =  3

3

1
1 1

3
0

t

t

e

e





  
 
  

82. Zero state response = L–1(s) B U(s)

= L–1  
1 1

3 1 1
01

0
3

s s s

s
s

 
         
  

= L–1
 
 
 
  

2

1

0
s

= 
 
 
 0

t

State transition equation = Zero input response
+ zero state response.
 Xt =(X) X(0) + t

= 
3

3

1 1
00 3

t

t

te

e





     
      

= 
3

33

t

t

t e
e





 
 
 

 83. It is state space representation using phase
variable.

Standard form  

–1 –2

0 1 0

0 0 1

– – –n n na a a

 
 
 
  

Thus ATQ an = 1, an–1  = – 2, an–2  = 4

85. H(j) =
10 1

10 100

4

2



 

j

j j



 

b g
b gb g

=
10 1

10 1
10

100 1
200

4

2
2



FH
I
K FH

I
K

s

s s

a f
a f

=
0 1 1

1
10

1
100

2
. 

FH
I
K FH

I
K

s

s s

a f

  Value of K =  + 20 log10 (0.1)
= – 20 db.

So plot will start from –20 db ft .
87. F(s) = s5 – 3s4 + 5s3 – 7s2 + 4s + 20

We can solve it by making Routh Hurwitz array.
s5 1 5 4
s4 –3 –7 20

s3 8/3 20/3 0
s2 5 20 0
s1 0 0 0
s0 20 0 0

We can replace 1st element of s1 by 10.
If we observe 1st column, sign is changing two
times, so we have two poles on right half side of
imaginary axis and 5s2 + 20 = 0.
So, s =  2 j and 1 pole on left side of imaginary
axis.

88. If GH plot incircles (– 1, j0) that is the critical
point, then the system becomes unstable. So
option 1 is there which does not enclose the

(–1, j0) other all are incircling the critical point.

89. Transfer function for u1

TF1 =
s s

s
s s

 




F
HG
I
KJ 
F
HG
I
KJ

1 2

1
1
2

1
1

b g b g/

.

= 
s

s





2

3

b g
b g

 

Hence stable
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Transfer function for u2

TF2 =

1
1

1
1

1
1
2

s

s
s
s


F
HG
I
KJ



F
HG
I
KJ



F
HG
I
KJ.

=
1

3 1s s b g b g
Hence unstable, as it has pole at right side of
s-plane.

90. Given, G (s) =
1

1 2s s s( ) ( ) 

G (j) = 1
1 2j j j   b g b g  =  

  

 

j j j1 2

1 42 2

 

  

b g b g
e j e j

=
j j2 3

1 4

2

2 2

 

 

 

  

e j
e j e j

 = 
  

 

3 2

1 4

2

2 2

 

  

je j
e j e j

=


 

3

1 42 2 e j e j
 – j 

2

1 4

2

2 2



 



  

e j
e j e j

 x =
3

1 42 2  e j e j
,

y =  –
2

1 4

2

2 2



 



  

e j
e j e j

At    0, x  
3
4

, y  – 

92. G(z) =z–1 + z–2

Characteristic equation is
1 + KG (z) = 0

 1 + K (z–1 + z–2) = 0
 z2 + Kz + I = 0
Using stability criteria,

|K| < 1
i.e. –1 < K < 1

93. Characteristic equation is

1 + 
K s

s





3

8
2

b g
b g

= 0

 s2 + (16 + K) s + 3K + 64 = 0
Routh's array,

s2 1 3K + 64
s 16 + K
s0 3K + 64

 No such K exist to make all element of a
row equal to 0.

   94. By block diagram, technique reduction method

95. Z = R L
1
C

2
2

 FHG
I
KJ



Y = 
1

R L
1
C

2
2

 FH
I
K


By rationalization and varying frequency , then
locus is

96. Steady state value of z

= t s s
k

ss

i

0
E( )

= 20

2 2

1
. .

1
2

                


i

s
i

p
r

k
s

s st
k

k
s s s s

= 20

2 2

/ s

1 +
2

             

 i

s
i

p
r

k
t

k
k

s s s s

= 1

97. By Clayey – Hamilton theorem,
Every square matrix satisfies its own
characteristic equation

() = 3 +2 + 2 + 1 = 0
(P) = P3 + P2 + 2P + I = 0

 I = – P3 + P2 + 2P
Premultiplying by p–1, we get

P-1 = – [P2 + P + 2I]

98. G(s) =
y(s)
U(s)

1

s 3s 22


 

 y(s) = 1

s 3s 22  
 U(s)

But U(t) = (t – 1)
and U(s) = e–s

 y(s) =
e

s 3s 2

–s

2  
For steady state,

t
y(t)
 

 =
s 0
Lt


sy(s)

=
s 0

e

s 3s 2

–s

2  

=
1
2

 = 0.5
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99. C1  = 
10(s 1)
(s 10)




C2 = 
s 10

10(s 1)



      

zero dominates pole pole dominates zero
 lead compensator  lag compensator

Hence C1 is lead compensator and C2  is lag
compensator.

Alternately

 for G = tan–1  – tan–1

10

or  for G = tan–1

10

  – tan–1

Hence C1 is lead compensator and C2 is lag
compensator.

100. Transfer function of given plot is of the form

T(s) = k (1 s T ) (1 s T )

s
1 2

2

 

so, it will have two poles and two zeroes.
First – 40 dB/decade slope indicates 2 pole in system.
Next – 20 dB/decade slope indicates 1 zero is added.
Next – dB/decade slope indicates 1 more zero is
added.
Alternately
At  = 0.1, slope changes from – 40 dB/decade to
– 20 dB/decade, then, zero at  = 0.1
At, > 0.1, slope changes from – 20dB/decade to
0 dB/decade, then one more zero at > 0.1
Since, for  < 0.1, slope is – 40 dB/decade there is
alveag two poles.
Hence (c) is the correct option.

101. K > 0
Characteristic equation of the system is

1 + G(s) H(s) = 0

 1 + K
s(s + 3) (s + 10)

 = 0

 s(s2 + 13s + 30) + K = 0
 s3 + 13s2 + 30s + K = 0
Routh array

s3 1 30
s2 13 K

s1
390 – K

13
0

s0 K
For system to be stable, all element of first column
must be positive.

 390 – K
13

 > 0

 K < 390
and K > 0
Hence range of K is 0 < K < 390

102. M(s) =
100

s + 20s 1002 

Comparing with standard form,

M(s) =


 
n

2
n n

2s 2 s

2

 
we get 2n = 20

  = 20
2 10

 = 1

and n
2 = 100

 n = 10
For  = 1, system is critically damped.

103. The relative error of product or division of
different quantities is equal to the sum of relative
errors of individual quantities.

105. Two roots at s = ±j and one in left halfs-plane
s3 2 2
s4 4 4

Characteristic equation is
A(s) = 2s3 + 4s2 + 2s + 4 = 0

 s3 + 2s2 + s + 2 = 0
 (s + 2)  (s2 +1)  = 0
 s = – 2,    s = ± j

106. At = 0.1, 2 poles
At  = 2,1 pole
At = 5, 1 zero
At = 25, 1 pole

80dB – 40dB/dec
– 60 dB/dec

(rad)2552

– 40 dB/dec

60 dB/dec

0.1
So, transfer function,

T(s) =
k s

s s s
( )

 
5

2 25a fa f
 80 = 20 log 

5

0 1 2 252
k

.a f  

 4 = log
5
0 5

k
.

 10k = 104

 k = 103 = 1000

 T(s) =
1000 5

2 252

s

s s s



 

a f
a fa f
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107. Given : G (s) =
K

( +1)( +2) s s

From curve, steady state error = 1 – 0.75 = 0.25

 E(s) =
R

H( G
( )

) ( )
s
s s1


1

1 1
1 2

/

.

s
k

s s


 b gb g
 ess = lim

s0
sE(s)

 = lim
s0

s
s
k

s s

.
/

( )( )

1

1
1 2


 

 = 0.25

 1

1
2


k

 = 0.25

 1 = 0.25 + 
0 25

2
. k

 k = 0 75 2
0 25
.

.
 = 6

108. Given : G(s) =
e

s

s–0.1

 G(j) =
e

j

j–0.

( )

1 



Phase crossover frequency :

 – 90 – 0.1   180


 = –180

 18

 = 90

  = 5 = 15.7 rad/sec
Gain margin :

a = G( )j  = 18.7 = 
1


 = 
1

15 7.
 Gain margin = 20 log a

= 20 log (
1

15 7.
) =  – 23.9 dB.

109.          Gain, G(s) = 100  10%

H(s) = 
9

100

C( )
R( )

s
s

= 
G( )

1 G( )H( )
s
s s

When G(s) = 100 + 10 = 110,

C( )
R( )

s
s

= 
110

9
1 110

100
 

 = 1100
109

= 10.091 = 10 + 0.1
= 10 + 1% of 10 = 10.1

When G(s) = 100 – 10 = 90,
C( )
R( )

s
s

= 
90

9
1 90

100
 

= 
900
91

= 9.89  9.9

= 10 – 0.1  10 – 1% of 10

Hence overall system gain = 10  1%

110. Given : G(s) = 
2

1s 
 = 

A
T 1s 

 Time constant, T = 1

For 98%, time required = 4T = 4 sec

 C( )
R( )

s
s

= 2
1s 

 C(s) = 
2 1

( 1)s s




 C(s) = 1 1
2

1s s
   

 C(t) = 2 1 te   = 2 0.98
 1 – e–t = 0.98

 e–t = 0.02

 t = -ln 0.2 = 3.91 sec

111.

C1 = capacity of tank (1)

C2 = capacity of tank (2)

h1, h2 = heights of water

Q1, Q2 = flow rates

R1, R2 = resistances of flow

Q1 = 1
2 1Q C

dh
dt



Q2 = 2
3 2Q C

dh
dt



 Q2 = 1 2

1R
h h

, Q3 = 2

2R
h

Equivalent circuit :

Q1
A

B

C

D
Q3

Q2

h 1 R1 R2

C2C1

h 2

 A, C = capacitance

B, D = resistances
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112. G(s) = 1
( 1) ( 2)s s s 

G(j) = 
1

( 1) ( 2)j j j    

M = 
2 2

1

1 4    
= 1 190 tan tan

2
  

   

                          

3
4

–

1
6

–

2 rad / sec 

For  = 0,    M = ;  = – 90

For = ,     M = 0;  = – 90 – 90 – 90 = – 270

So Cutting Real Axis
Imaginary part of G(j) = 0

i.e.              Img {G(j)} = 0

 j 2

1
Im

( 3) 2
 
      

 = 0

 j j3 2

1
Im

3 2
 
       

 = 0

 j w2 3

1
Im

3 (2 )
 
      

 = 0


j

w

2 3

2 2 3 2

3 (2 )
Im

(3 ) (2 )
      
     

 = 0

 2 – 3 = 0

 2 = 2 0  

Neglecting  = 0, we have

 = 2

 M 2at  = 
1

2 3 2 4

=
1 1 3

6 436
     

113. Given : x  = Ax + Bu;

A = 
1 2

,
0 2

 
 
 

 B = 
0

1
 
 
 

For stability, characteristic equation

= 1( I A)s     = 
1

1 2

0 2

s

s

 
  

= 
( 2) 21

0 1M

s

s




 = 0

 M = (s + 1) (s – 2) = 0
                      (s – 2) (s + 1) = 0
 s = 2, s = –1
So one root in right hand side of s-plane, so system
is unstable.

For controllability : B = 
0

1
 
 
 

AB = 
1 2 0 2

0 2 1 2

     
     

     

 B : AB = 
0 2

1 2
 
 
 

= 0 – 2 = – 2  0
So controllable.

114. Given :     s(s + 1) (s + 3) + k(s + 2) = 0 ; k > 0

           ( 2)
1

( 1) ( 3)
k s

s s s



 

 = 0

But          1 + G(s) H(s) = 0

 G(s) H(s) = ( 2)
( 1) ( 3)

k s
s s s


 

Roots s = 0, s = – 1, s = – 3 (poles) ; s = – 2 (zero)

It has real pole or zeros.

A = 2 1
180

q
n m


 



At s = 0, Asymptotes

0 = 
(2 * 0 1)180

2


= 90

At s = 1, 1 = 
(2*1 1) *180

2


 = 270

Centroid,

(–A) = 
real parts of poles – real poles of zeros

number of poles –number of zeros
 

    = 1 3 2 0
2

     = – 1

  Re[s] = – 1

115. At G(j) = – 180, magnitude M = 0.5

 G.M = 20 log
1

0.5
 
 
 

 = 6dB

At |G(j)| = 1,  phase angle G(j) = – 150

 P.M = 180 + (– 150) = 30

116. For step input, ess = 0.1 = 
1

1 k
  K = 9

G(S) = 
9

S 1
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Now input is pulse r(t) = 10 [u(t) – u(t – 1)]

R(S) = 10
1 se

s

 
  

ess =
S 0

S.R( )
Lt

1 G(S)H(S)
s

 

= 0
Lt

S

S 10[1 ]
S

S 10
S 1

se




 =
0

10
= 0

117. |Z|< 1, so |Y| > 1
Z is having +ve real part and positive imaginary
part (from characteristics)
So,Y should have +ve real part and negative
imaginary part.

118. Since, open loop system stability is depends only
on pole locations, hence system is stable.
There is one zero on right half of s-plane so
system is non-minimum phase.

119. F2(t) = L{f(t – )} = e–S F1(S)

G(S) = 
*

1 1
2

1

F ( ).F ( )

F ( )

 
 

s
se s s

e
s

G(t) = L–1 {G(S)} = (t – )

120. Centroid,  =

2
2

3
3 1

    
 


 =
6 2
6

 
 =

4
6


=
2
3



    Asymptotes =
 29 1 180

p z





 1 =
180

90
2

 

and 2 =
18 3

270
2


 

121. By Dolittle’s decomposition,

2 1

4 1
 
  

= 11 12

21 22

1 0
1 0

u u
l u
   
   
   

We have u11 = 2, u12 = 1
l21 u11 = 4

 l21 = 2
and l21u12 + u22 = – 1
 u22 = – 1 – l21 u12 = – 3

then,
2 1

4 1
 
  

= 
1 0 2 1

2 1 0 3
   
      

...(A)

eqn (A) does not signfy any choice
Now, from crout’s decomposition,

2 1

4 1
 
  

= 11 12

21 22

0 1
0 1

l u
l l
   
   

  
We get, l11 = 2, l11 u12 = 1

u12 = 
1
2

 = 0.5

and, l21 = 4, l21 u12 + l22 = – 1
 l22 = – 3

Then,
2 1
4 1
 
  

= 
2 0 1 0.5

4 3 0 1
   
      

Hence the choice is (d).

122.
s
s

Y( )
R( )  = s k s2

1
( 1) 1  

2n = k + 1

  = 
1

2
k  

 
 

;

Peak over shoot = e–/(1 – 2)

123. G(s) = 
2 2

2 2 2

(9 ) 4

1 9 16

   

    
 = 0

 2 = 9

 = 3 rad/s

124. L[f(t)] = F(s) = 
2

1

1s s 
;

L[tf(t)] = (–1)
F( )d s
ds

= (–1)
2

(2 1)

1

s

s s

  
   

 = 2

2 1

1

s

s s


 

125. Qc = [B AB A2B]

A = 
1

1

3

0 0

0 0

0 0

a

a

a

 
 
 
  

; B = 

0

0

1

 
 
 
  

;

AB = 2

0

0

a
 
 
 
  

; A2B = 
1 2

0

0

a a 
 
 
  

Qc = 
1 2

2

0 0

0 0

1 0 0

a a

a
 
 
 
  

If rank of Qc = 3 = order of matrix, then

Qc is controllable 
1

2

3

0

0

0

a

a

a

 
 
 

, then Qc  0
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126. Characterisitic equation is
1 + G(s)H(s) = 0

 1 + 
3 2

( 1)

2 1

k s

s as s


  

 = 0

 s3 + s2a + s(k + 2) + (k + 1) = 0
3

2

1

0

1 2
1

( 2) ( 1)

ks
a ks

k a k
s

a
s




  

as2 + (k + 1) = 0; s = j; s2 = –2; = 2
–a2 + (k + 1) = 0; a2 = k + 1; 4a = k + 1;

From options, k = 2, a = 0.75

127. y(t) = ( ) cos(3 )
t

x d


  
Since y(t) and x(t) are related with some function
of time, so they are not time-invariant.
Let x(t) be bounded to some finite value k.

y(t) = K cos(3 )
t

d


   
y(t) is also bounded. Thus system is stable.

128. 100 μf

10 k

100 μf

V (S)2V (S)1

V (S)2
V (S)1

R

1
CS

1
CS

By voltage division rule

v2(s) = 1

1
R

V ( )
1 1

R

cs s

cs cs



 

2

1

( )
( )

v s
v s

 =
3

6

3
6

1
10 10

100 10
2

10 10
100 10

s

s





 


 


=

4
4

4

10
10

10 11
s




2

1

( )
( )

v s
v s

 =
( 1)
( 2)
s
s



129. u s( ) y( )s1/s

( )
( )

y s
u s  =

1
s

y(s) =
1
s

  u(s)

For unit step 1/s

u(s) = 1
s

y(s) = 2

1
s

y(t) = t u(t)
130.             As h(t)   =     t u(t)

             input           response

(t)  t a (t)

u(t)  tu(t)dt = u
0

 
t

tdt  = 
2

( )
2
t u t

u(t – 1) 
2( 1) ( 1)

2



t u t

 131.Consider option (a): In which all the poles lie
on the left of j axis which satisfy casual stable
LTI system.
Option (b): For a stable casual system, there are
no restriction for the position of zeroes on s plane.
Option (c): text true.
Option (d): Roots of characteristic equation are
all closed loop poles and they all line on the left side
of the j axis.

 132.Two systems with impulse responses (h1)(t) and
h2(t) are connected in cascade

h t1( ) h t2( )

Then the overall impulse response of the Cascaded
system in given by convolution h1(t) and h2(t)
Overall Impulse Respone = Convolution of h1(t), h2(t)

= Product of H1(s), H2(s)
Where H1(s), H2(s) are transfer function is S domain.

 133.  For max power

RL =
2 2R Xs s

= 2 24 3 5 
 134.

32

– 40db

10

– 8

1
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 20 log k = 32
k = 101.6 = 39.8

 As slope is – 40db/decade so two pols  at ons’m

    so T(s) =
39.8
52

135.
1

S
–1

S
–1

–4

– 2

V(S) V(S)

Forward path
P1 = S–1, S–1 = S–2    1 = 1
P2 = S–1 2 = 1

Loop
L1 = –4S–1

L2 = –2S–1 S–1 = – 2S–2

L3 = –2S–1

L4 = –4

T(S) =
2 1

1 2 –1
S S

1 4 2S 2S 4S

 

 


   

=
1 2

1 2

S S
S 6S 2S

 

 


 

= 2
1

5S 6S 2


 
S

136. Apply Laplace transform
h(s) = e–s + e–3s

O t

u t( )

for input step voltage 

y(s) = h(s)
1
s

= 3 1 /s se e s   
y(t) = u(t – 1) + u(t – 3)
u(t) = 1 for t 30 = 0 prt < 0

 O/P in y(2) u(t – 1) + u(t – 3) = (4 – 1)
= 4(z –1) + 4 (2 – 3)
= 4(1) + (4 – 1)

= 0 + 1 = 1

137. When all elements of row have zero values which
leads to auxiliary equation. This premature
termination of the array indicates the presence
of imaginary roots.

138. C( )
R( ) ( 1)( 2)

s k
s s s k


  
will give the root locus

given the diagram.

139. State transition matrix,
(t) = L–1 [sI – A]–1

=
1

1 1 0
1 1

s
s


  
   

L

=     
     

1
2

1 01
1 1( 1)

s
ss

L

(t) = 

 
  
 
  

1

2

1
0

1
1 1

1( 1)

s

ss

L  = 0t

t t

e

te e

 
 
  

140. G(s) = 2

5( 4)

( 0.25)( 4 25)

s

s s s s



  

G(j) =
2

5( 4)

( 0.25)[( ) 4 25]

j

j j j j



     

=

    
 

          
   

2

5 4 4 1
4

4
(4 1) 1 25

5 25

j

j
j j j

=

  
 
         
   

2

1
80 4
25 4( )

(4 1) 1
5 25

j

j j
j j

Constant gain term = 
80
25

 = 3.2

Corner frequencies are  = 4,  = 0.25,  = 5
Then highest corner frequency  = 5 rad/sec.

141. For controllability,
MC = [Q  PQ]

MC =
0 1

1 3
 
  

MC =
0 1

0
1 3




Therefore, the system is Controllable.
Now, for observability.

Mo =  
 

T T TR R p = 
0 0

1 3
 
  

Mo = 


0 0
0

1 3

Therefore, the system is not observable.

142. From the signal flow graph, G(s) = 
 
 

C

U

s

s

By mason’s gain relation,

Transfer function = 1 1 2 2P P .....   

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P1 = 1

S
h

 ; P2 = 0

2

h
s

1 = 
11

a
s

   
; 2 = 1;

 = 1+ 01
2

aa
s s


Transfer function = 

01 1
2

01
2

1

1

bh a
s s s

aa
s s

    

 
= 1 0

2
1 0

b s b
s a s a


 

144.
1
s

R( )s
G( )s s

+

–

+

–

–
C( )s

If G(s) = S

 
 

C

R

s

s  = 2

S
2s s 

145. Transfer function

 C[SI – A]–1. B. = 
1

S 1 0
[1 0]

1 ( 1) 1s

   
      

    Transfer function = 2

1
1s s 

G( )
1 G( )

s
s  = 2

1
1s s 

 G(s) = 2

1
s s

Steady state error for unit step

ess =
A

1 K p = 
0

1
1 limG( )

s
s




ess =

20

1
1

1 lim
s s s




= 
1

1  

ess = 0

146. G(s) =
(1 3 )

.
(1 )

s
k

s



G(s) =

1
3 .

3
( 1)

k s

s

  
 


Here k = 1

1
T

 =
1
3

  
1
T

 = 1

m = 1 1; 33
 

1
3

G( )s
  =

4
3

4
3



indB
Gm  = 20log 3  = 4.77 dB

m = 1 1
sin

1
   
   

 = 1
11 31 sin3 11 3


 
 
  

 = 1 1
sin

2
  
 
 

m = 30
147.

X (s)1

X (s)2

Y(s)

–1–1

1 G1 G2

when X1(s) = 0
X (s)2

Y(s)

–1–1

1 G1 G2

Forward path gain,
P1 = G2

Loop gain,
L1 = –G1

L2 = –G1 G2

 = 1 – (L1 + L2) + L1L2

= 1 + G1+ G1G2 1 2L L 0
 = 1 + G1(1 + G2)      

Transfer function,

2

Y( )
G ( )

s
s = 1 1P 



= 2

1 2

G .1
1 G (1 G )  1 1 

   
1

2

2 1 2G ( ) 0

GY( )
G ( ) 1 G (1 G )

s

s
s




 

148. Initial slope is zero
It is type ‘0’ system
(No pole at origin)

Starting gain = 20 log K db
20 log K = 20

K = 10
Given T/F

G(s) = 
1000

10( 10)
s +

s 

        = 
1000 1

1000

10 10 1
10

s

s

  
 
   
 

             

10 1
1000

G( )
1

10

s

s
s

  
 
  
 
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150. + G1

G2

H

–

+
+

+
–

X(s)
Y(s)

Y(s)

Y2(s)

Y1(s)

Y(s) = Y1(s) + Y2(s)
Y1(s) = (X – HY)G1 = XG1 – HG1Y
Y2(s) = (X – HY)G2 = XG2 – HG2Y
Y(s) = XG1 – HG1Y + XG2 – HG2Y

Y = X(G1 + G2) – H(G1 + G2)Y
Y + Y(G1 + G2)H = (G1 + G2)X
Y(1 + (G1 + G2)H) = (G1 + G2)X

Y(s)
X(s)  =

1 2

1 2

G G
1 H(G G )


 

151. System is second order
It means, number of poles = 2
System has perfectly flat magnitude response.
It means, It is all pass system
In all pass system,
Poles and zeros are mirror image about Imaginary
axis,

One pole = (2 – j3)
Other pole = (2 + j3)

(–2+j3) (2+j3)
splene

Re

(2–j3)(–2–j3)

Im

Therefore
poles at (2 ± j3)
zeros at (–2 ± j3)

152. Open loop transfer function of a third order unity
feedback system

G(s) =
K

( 1)( 2)s s s 
Now zero is introduce at –3.
Modified transfer function,

G(s) =
K( 3)

( 1)( 2)
s

s s s


 

Closed loop characteristic equation,
1 + G(s) = 0

K( 3)
1

( 1)( 2)
s

s s s



 

 = 0

s(s + 1)(s + 2) + K(s + 3) = 0

s3 + 3s2 + 2s + Ks + 3K = 0

s3 + 3s2 + (K + 2)s + 3K = 0

Routh array corresponding to characteristic
equation,

3

2

1

0

1 (K 2)

3 3K
2 0

3K 0

s

s
s
s



For every value of K > 0
Ist column of the array are positive.
Therefore, Root locus of modified system never
transits to unstable region.

153.

Re

Im

G1(s) = 
1
s

 and  G2(s) = s

From the Nquist plot,

 G1G2(s) = 
1
s

  s = 1

154. The characteristic equation of given function is
1 + G(s) H(s) = 0

 s(s2 + 3s + 2) + K = 0 ( H(s) = 1)
 –k = s3 + 3s2 +2s
In order to find break away point

We have Kd
ds

= 0

 3s2 + 6s + 2 = 0

 S = –0.42 is the solution that makes k > 0

155. Here A =
22

j
j 


  =  

2 2

2 2 1

2 2 22 2
 



 =
22

j
j 






= 90 – tan–1 
2
2

= 90 – tan–1 (1)
= (90 – 45) = 45

So, the value of A and  are 
1

2
, +45 respectively
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156. Given transfer function G(s) = 3

100
( 1)s 


3

100
180

( 1)
pc

j 

   
 

–3 tan–1 pc = – 180°

 pc = 3
So, the phase cross-over frequency of the given

transfer function is 3 .

157. From the given Bode plot the corner frequencies
are 2 rad/sec and 4 rad/sec respectively.

Transfer function (TF) = 2

Ks

1 1
2 4
s s     

  
20logK + 20 log = 0 dB
At  = 0.5, we get

20logK + 20 log0.5 = 0

20logK = 
1

20 log
2

   
 

20logK = 20log (2)
 K = 2

 TF = 2

2
(1 0.55)(1 0.25 )

s
s 

158. Given transfer function G(s).H(s) = 2

3
( 3)
s

s s



CE = 1 + G(s).H(s) = 2 2

3
1 0

3
s

s s


 


s3 – 3s2 + s + 3 = 0
3

2

1

0

S 1 1
S 3 3
S 2
S 3



System is unstable with two right half of s-plane
poles
 Z = 2, P = 1

N = P – Z
N = 1 – 2 = –1 (it shows once in clockwise

direction.

159. Let I = 
sin 2

2
t

dt
t





 
   ...(i)

As per the fourier transform of

 2sin 2
2 rect

t

t t

     
 

 sin 2
rect

4

t

t

      

So,  sin 2 j tt
e dt

t


 




  = rect

4
 

  
...(ii)

Putting  = 0 in above equation, we get

 sin 2 t
dt

t






 = 1

Now from equation (i)

 I = 
 sin 2

2 dt
t







  = 2  1 = 2

160. Given P = 
3 1
1 3
 
 
 

According to question

P
x
y

 
 
 

= 
a
b

 
  

3 1

1 3

x

y
   
   
   

= 
a

b
 
 
 

3x + y = a
x + 3y = b
a2 + b2 = 1

 10x2 + 10y2 + 12xy = 1

Ellipse with major axis along 
1

.
1
 
 
 

161. Through open loop transfer function

G(s) = 
   

K( 1)
, K 0, and T 0

1 T 1 2
s

s s s


 
 

For closed loop system stability, characteristic
equation is

 1 + G(s) H(s) = 0

  1 +   
K( 1)

1
1 T 1 2

s
s s s




 
 = 0

s(1 + Ts) (1 + 2s) + k(s + 1) = 0
2Ts3 + (2 + T)s2 + (1 + k)s + k = 0
Using Routh's criteria

   

3

2

1

0

2T (1 )

(2 T)

2 T 1 2T
0

(2 T)

ks
k

s
k k

s

s k




  



For stability, k > 0
and (2 + T) (1 + k) – 2Tk > 0

k(2 + T – 2T) + (2 + T) > 0
or – (T – 2)k + 2(2 + T) > 0

– k > – 
 
 
2 T

T 2



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or k < 
 
T 2
T 2



Hence the closed loop system will be stable, if

0 < k < 
T 2
T 2



162. Damping ratio
 = 0.5

Undamped natural frequency
n = 10 rad/sec

Steady state output to a unit step input
Css = 1.02

Hence steady state error = 1.02 – 1.00
ess = 0.02

 Required characteristics equation is,
2 22 n ns s    = 0

2 2 0.5 10 100s s    = 0
2 10 100s s  = 0

From options, if we take option (b)

then Css = 
0

lim .C( )
s

s s


= 20

1 102
lim

10 100s
s

s s s
 

 
Css = 1.02

Hence the transfer function of a system

is 2

1.02

10 100s s 
.

163. Given, the gain at breakaway point
Open loop transfer function

OLTF  G(s) = 
K

( 1)( 4)
s

s s 
Now, characteristics equation is

1 + G(s) H(s) = 0
K

1
( 1)( 4)

s
s s


 

= 0

 Ks + (s2 + 5s + 4) = 0

K = 
 2 5 4s s

s

 
 =

4
5s

s
    

For break away point :
Kd

ds
 = 0

Kd
ds

 = 2

4
1 0 0

s
      

we get s =  2
Therefore valid break away point is

s = 2,
Now gain at s = 2 is

 K = 

Product of distances from all

the poles to break away point
Product of distance from all
the zeros to break away point

Gain, K = 
1 2

1
2




Hence the value of K is 1.
164. The characteristic equation is given by

s3 + Ks2 + (K + 2)s + 3 = 0
For this system to be stable, using Routh’s
criterion, we get

3 < K(K + 2)
K2 + 2K – 3 > 0
K2 + 3K – K – 3 > 0
K(K + 3) –1 (K + 3) > 0
(K + 3) (K – 1) > 0
So from the given option, K > 1 conditions should
be satisfied

165. The transfer function of a system is given by

0

1

( )
( )

V s
V s = 

1
1

s
s




 = H(s)

For the minimum and maximum values of ‘‘’’

H(j) = 
1
1

j
j

 
 

 H(j) = – 2 tan–1 
At  = 0; H(j) = 0
At  = ; H(j) = –
Therefore the minimum and maximum value of
 are – and 0.

166. Given, X = 
1 2 1

2 0 2
X u

   
   

   

and Y =  1 0 X

Transfer function = C[sI – A]–1 B + D

[sI – A]–1 = 

2 2

2 2

2
4 4

2 1
4 4

s
s s s s

s
s s s s

 
     

 
     

[sI – A]–1  B = 
2

2

4
4

1
4

s
s s

s
s s

 
   

 
   


( )
( )

Y s
U s = C[sI – A]–1  B = 2

4
4

s
s s


 

So the transfer function of the system 
( )
( )

Y s
U s  is

2

4
4

s
s s


 
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167. From the given fig.

Transfer function, 
1

( )
( )

Y s
U s
 
 
 

=

1
2

1 2
2

[1]

1

K
LJs

K KR
LS LJs

     

= 1
2

1 2

K
LJs RJs K K 

168. V1
jx

V o2

Assuming loss-less line

               1 2v v
P sin

X
 

Max. power =  1 2
max

v v
P

X
For Lossy-Line,

V1
jx

V1R

Because of Resistance there is a power loss
             Power Loss = 3I2R

 Lossy Line  1 2
max

v v
P

X

169. 1

1 1

2
n

2 2 2
1 n n

15

s 5s 15 s 2 s




      

           
1n 15 3.872  

       2G1n1
 = 5

       1
5

G 0.64
2 3.872

 


under damped

      
2

25

s 10s 25 
 1

2 2

2
n

2 2
2 n ns 2 s




    

              
2 2

2
n n25  5rad / sec     

        
22 n2   = 10

             2 = 
10

1
2 5




critically damped

170. s7 + s6 + 7s5 + 14s4 + 31s3 + 73s2 + 25s + 200 = 0
7

6

5

4

3

2

1

0

s 1 7 31 25

s 1 14 73 200

s 7 42 175 200

s 8 48 200

s 4 12 Row of  zeros

s 24 200

s 170

s 200

  





Auxiliary equation 8s4 + 48s2 + 200
       A.E. = s4 + 6s2 + 25 = 0

   
  3d A·E 4s 12s
ds

 

A.E: s4 + 6s2 + 25 = 0
             s = – 3  j4  2 poles in LHS
               = + 3  j4  2 poles in RHS.
2 sign changes in above A.E  2 poles in RHS
Total poles = 7
Poles in RHS = 2 + 2 = 4
Poles in LHS = 7 – 4 = 3
[No poles on Imaginary axis]

171. The given characteristic equation of LTI system
is

4 3 2(s) s 3s 3s s k      , for

According to Routh hurwitz criteria,

4

3

2

1

0

s 1 3 k

s 3 1 0
8s k3

8/3 3k
s

8/3

s k



For stability all elements of 1st column should be
positive.

8
3k

3 0 and k 0
8 / 3


 

 k < 
8
9

 and k > 0

 0 < k < 
8
9

172. It is given that

H(s) = 
2

1 1 1
2

2 2 2

a s b s c

a s b s c

 

 
If a1 = b1 = 0, then H(s) becomes

H(s) = 
2

2 2 2

0 0 4

a s b s c

 

 

H(s) = 1
2

2 2 2

c

a s b s c 

Now H(0) = 
1

2

c
c (i.e., as low frequency s  0

  0)
H() = 0(i.e., as high frequency s     )

So the system passes low frequency and blocks
high frequency. So it works as a low pass filter.
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173. G(s) = 
0.25se

,
s



Now when the Nyquist Plot psses through
negative real axis then in phase become (–180°)

            
180

180 90 0.25


      


 = 2
Now Magnitude at this frequency

             
 0.25 j 2e 1

G 2 0.5
j2 2

 
   



At negative real axis the co-ordinate becomes (–
0.5, j0)

174.  From the given bode-plot, we can say

 At origin, there is a pole at origin, since the
initial slope is – 20 db/dec.

 At  = 20, the change in slope is – 60 – (– 40)
= – 20 db/dec, so it imply one pole at  = 20.

 At  = 1, the change in slope is – 40 – (– 20)
= –20 dB/sec, so it imply one pole at  = 1.

 So in total the transfer function has 3 poles,
hence at  = , the net phase contributed by
3 poles is – 270

 Hence statement I is false and II is true.
175.

The transfer function of a lead compensator is

D(s) = 

1
s

3T3
1

s
T

  
 
 
 

The frequency at which phase is maximum is
given by geometric mean of pole and zero location,

m = 2

1 1 1
3T T 3T

          

176. From the given state space model, we can say that

0 1 0
A , B , C [1 0]

2
   

           
Transfer function

Now T(s) = C(sI – A)–1B

=  
1

s 0 0 1 0
1 0

0 s 2

      
              

=  
1s 1 0

1 0
s 2

   
         

  s 2 1 01
1 0

ss(s 2 )

     
              

 
2 2

1 0
s1

[1 0]
ss 2 s s 2

 
                     

2s 2 s




     by comparing with standard

equation 2
n   we get

n =   and n  = 

   = 




177. Apply the Mason's gain formula to the

given, SFG T.F = 
ad

1 ade dc 
...(1)

1 a

e

 
  

d
1 cd

apply the Mason's gain formula to the optionn (c)

T.F = 

da ad1 cd
ade 1 ade dc1

1 cd

 
 



...(2)

(1) = (2)

                  
1

e

1
 
  

d
a

1 cd

178. Given that the final value to a step of 5 V is 10
and T = 0.5s




C(s) K
R(s) 1 TS

  T.F = 
2

1 0.5s

Final value 


    s 0

5 2 5
LtS(TF) S

S 1 0.5s S
 = 10

T.F = 2
1 0.5s

179. Characteristic Equation = 1 + G(s) H(s) = 0

  2
1 1 20

1
(s 1) (s 20)s


   = 0

    (s3 + s2) (s + 20) + 20 = 0

     s4 + 21s3 + 20s2 + 20 = 0
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The given system is of 4th order

4

3

2

1

0

s 20 201
s 0 021

20 020s
21s

20s










Number of sign changes in the first column = 2
 two roots are present in the right half of
s-plane, and system is unstable.

180. Given transfer function = 
2

3 2
s s 1

0
s 2s 2s k

 


  
Now, characteristic equation is given by

1 + G(s) + H(s) = 0
   s3 + 3s2 + 3s + (k + 1) = 0
Now according to Routh Hurwitz Criteria,

3

2

1

0

1s 3
3s k 1

9 (k 1)
s

3
s k 1


 



For marginal stability,
 9 – (k + 1) = 0

              k = 8
181. As given circuit:

So, C(s) G
R(s) 1 GH




 (standard negative feedback

system)
E(s) = R(s) – C(s)H

= 
GHR(s) R(s)

1 GH



 = 

GHR(s) 1
1 GH

   

= 
1 GH GH 1R(s) R(s)

1 GH 1 GH
      


E(s) 1
R(s) 1 GH




Hence, option (c) is the correct answer.
182. As given function;

H(s) = 


 2

As B

s Cs D
At low = freq. (s = 0)

H(0) = 
B
D

 (exist)

At high –  freq. (s =  )
H() = 0 (No output)

Since, H() should be non-zero for HPF. So, the
above system cannot be operated as HPF because
for high pass filter should pass high-frequency
component i.e H() should be non-zero.
Hence, the system cannot operate as high pass filter.

183. For, the first order system, there exist one finite
pole, by observing magnitude of plot, it is
maintaining constant magnitude, this exist for
all pass system.

So, Possibilities,      T.F = 
 

 
 

s 1 1 s
or

s 1 1 s
Observe phase angle at w  

 = – 180°
Number of poles, P = 1
Number of zeros, Z = 1
It is having one pole at left and one zero at right.

184. As we know that
Characteristics equation, 1 + G(s) = 0

So, 1 + 2

K
0

s 2s 5


 
Now, s2 + 2s + (K –  5) = 0
By Routh table analysis,

K – 5 > 0, K > 5 and K > 0
For stability K > 5

185. In given figure;
Given Nyquist contour S–plane

Img(s)

–1 Real(s)
×

Corresponding to the Nyquist contour, the Nyquist
plot is drawn, and is shown in figure below,

                                         G(j)H(j)

 = 0–

–

(–1, j0)

(N=1
 = –

 = +

+

= 0+

From the plot
Number of Encirclement (N) = 1
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186. Transfer function of given system is

                2
C(s) 100

T.F
R(s) s 10s 100

 
 

By compair it to standard transfer function

           T.F = 
2
n

2 2
n ns 2 s



   

             n2 10 

So,           2
n 100 

 n = 10 rad/sec

                   
10

2 10
 



                   0.5 
187. As given figure :

From signal flow graph;

R(s) Y(s)

3

2

1

1/s

Now by using Masson’s graph formula.

Y(s)
R(s)

 =  
1 1 1 2

1

P P
1 L

   
  

 =  

2
3 3s 2s

1 s 11
s

 


    

188. As given transfer function;

GH =  
3s 5
s 1



Lim ReiC1

C3

C2

R

Img

Re

Now for mapping C2,

G(s) H(s) = 
j

jR

3Re 5
lim

Re 1





 
 

  
( S = Rej)

So, G(s) H(s) 3

189. As given that,

G(s) = 
1

s 1
H(s) = 1

According to the question

R(s)
Y(s)+

–

Y (s)1

3 + 1
s

1
s – 1

Open loop transfer function = 
 
 
3s 1

s s 1
 
  

Closed loop transfer function =  
Y(s)
R s
 
 
 

                = 2
3s 1

s 2s 1

 
   

Final value of plant :

Yss = s 0
lim sY(s)


Yss = 2s 0

3s 1 1
lims 1

ss 2s 1

       
1

R(s)
s

    

As now, Y(s) = 1
1

Y (s)
s 1
    

Y1(s) =  s 1 Y(s)

Y1(s) =    2
3s 1

s 1
s s 2s 1

 
  

   

(Y1)ss = 1
s 0
limsY (s) 1


 

190. As given transfer fucntion;

K(s) = 

s
1

, 0,  1
s

1


    




K(s) =  
s
s
 
 

Also given that, the maximum phase lead occur at,

(m) =   4    rad/sec

  = 4 ...(i)
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As we know that

Amplification, M = 1020 log
  

   

6 = 1020 log     From (i)
M 6

 
   

6 = 10
4

20log  
  

So,  = 2

Now, from eq. (i);

2  = 4

  = 4

NUMERICAL TYPE QUESTIONS

1. The characteristic equation is given by
1 + GH = 0

or 1 + 
( )s
s



5
4  K = 0

or s + 4 + (s – 5) K = 0
or s(K + 1) + 4 – 5K = 0
This single root is given by

s = 
5K 4
K 1




  0 for stability, since K  0

or 5 K – 4  0, since K  0,

or K  
4
5   for stability

2. True
3. One

 f(s)    s s3 2 2 0

 
 

f ve
f ve
      
      







2 8 4 2
1 1 2 2

There is one real root between –2 and –1

f  (s) = 3 s2 – 2 and f  (s) = 0  s = ± 
2
3

f  (s) = 6s = – ve when  s = – 
2
3 = + ve

when    s = 
2
3

 f(s) is maximum when s = – 
2
3

   and minimum when  s = 
2
3

   Maximum value of f(s) = 2 + 
32
27

Minimum value of f(s) = 2 – 
32
27 = + ve

Graph cuts the X–axis at one point only. No other
real root.

4. Roots
5. From the characteristic equation

1 + G(s) H(s) = 0

3 2

( )
1 0

(1 ) ( – 1) (1 – )
s

s s s
 

 
      

 s3 + (1 + s2 + s +1 = 0

By Routh Hurwitz criteria
(1 + )  >1
(2 +  –1) > 0

  = 0.618 & – 0.618
But for system to be stable

 = 0.618
6. From the magnitude plot,

G(s) = 

S S
K 1 1

2 4
S S S

S 1 1 1
8 24 36

          
                 

Now comparing with given transfer function

a =
1
4

; b = 
1

24
For finding K:

(M)ind B

1 b g  

(–20 dB/dec)

K = ()n : where n is no. of poles from the given plot
 K = (8)1

Now ,
a

bk
= 

1
8

24
  
 

 = 0.75

7. T(s) = 
C( )
R( )

s
s = 2

4

0.4 4s s 


R( ) C( )

R( )
s s

s


=
E( )
R( )

s
s

=


 

2

2

0.4

0.4 4

s s

s s



Control Systems 6.51

Steady- state error

ess =
0

lim E( )
s

s s =




 

2

20

R( )( 0.4 )
lim

0.4 4s

s s s s

s s

Here, R(s) =
1
s

Then, ess = 



 

2

20

0.4
lim =0

0.4 4s

s s

s s
8. Characteristic equation is, 1 + G(s)H(s) = 0

 1 + G(s) = 0 (H(s) = 1)

 2
1

( 2)( 2 2)

k

s s s s


  
 = 0

 s4 + 4s3 + 6s2 + 4s + k = 0
Constructing Routh- array, we have

4

3

2

1

1 6

4 4 0

5

20 – 4
0

5

s k

s

s k

k
s

For the closed loop system to be marginally
stable, 20 – 4k = 0
 k = 5

9. g(t) = e–2[sin5t + cos5t]
Taking lapcase transform of g(t),

 G(s) = 2 2 2 2

5 2
( 2) 5 { 2} 5

s
s s




   
For DC gain, G(s)s = 0

G(0) = 2 2 2 2

5 2
2 5 2 5


 

 = 
7

29

10. H(s) =  
1

1s 

Put s = j, H(j) = 
1

1j

H( )j = 
2

1

1 
 input x(t) = cos (t)
Here  = 1 rad/sec

and ( )x t = 1

Hence, steady state output

y(t) = 1
( ) H( ) cos H( )x t j t j


      

A = 
1

( ) H( )x t j


 

A = 
1

2
 = 0.707

So, the value of A is 0.707.

11. E = 
C

F dr
Here F =  2 2 ˆˆ ˆ5 3 2 2xzi x y j x k   

=  2 2

C

5 3 2xzdx x y dy x zdz  
Put x = t,

y = t2,
z = t,
t = 0 to 1

dx = dt
dy = 2t dy,
dz = dt

=  1 2 2 2 3

0
5 3 2 2t dt t t tdt t dt  

=  1
2 3

0
5 11t t dt

= 
13 4

0

5 11
3 4
t t 

 
  

= 
5 11
3 4


=
53

4.41
12



12. From the given fig.

Forward path transfer function,

G(s) = 
sKe

s



Given, Phase margin = 30
or Phase margin = 180 + 

30 = 180 + 

 = –150
Now = G(j)= gc

[where, gc = gain crossover frequency]

G(j) = –90 – 57.3 
At  = gc

[gain crossover frequency]

G(j) = 1

or
1K 


 = 1   = gc = K rad/sec.

 G(j)=gc
= – 90 – 57.3 K

–90 – 57.3 K = –150
–57.3 K = –60

 K = 
60

57.3
 = 1.047

Hence the value of K is 1.047
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13. G(s) = 
1

1
s

s
 


System output,

Y(s) = 
1

( )G s
s


=
1 1
1

s
s s
 




=
1 2

1s s



y(t) = u(t) – 2e–t u(t)

 y(1.5) = 1 – 2e–1.5

= 1 – 0.446 = 0.554

So the value of the response of the system at
t =1.55 e is 0.554.

14.  
   


 

1
G s

s 1 s 2
 H(s) = 1
Steady state error due to unit step input is

 ss

s 0

A
e

1 Lt G s





    
     s 0

1 1
1 1

1 Lt 1
s 1 s 2 0 1 0 2

 
 

   

   
  



1 2
0.66

1 31
2

15. Steady-state error = ess = 1–0.8 = 
 p

1
1 K

       p p
1

1 K 5 K 4
0.2

          p 2s 0 s 0

K
K Lt G(s) Lt

s 1 s 2 
 

 

            
    

 2

K
4 K 8 4 2

0 1 0 2
16. As given that

O.L.T.F = 
 

K
G(s)

(s a)(s – b)(s c)
P = 1
N = –1
N = P – Z
Z = P – N = 1 – ( – 1)
Z = 2

Hence, 

G(s)

1 G(s)
 has two poles in the right half

of s-plane.

17. For the following RLC circuit, the gain at
frequency 2000 rad/sec is given 26dB. We need to
obtain value of R.

When the operating frequency is 2000 rad/sec

ZL = jwL = j × 2000 × 1 × 10–3 = j2

Zc = 6

j 1 j2
C 200 250 10

 
  

  
In general

Vo(j) = C
i

L C

Z V ( j )
R Z Z


 

  o

i

V (j ) j2 at 2000r/sec
V (j ) R j2 j2

 
  

  

 o

i

V (j ) 2
V (j ) R





...(i)

As given that,

o

i

V (j )20log 26
V (j )







26

o 20

i

V (j ) 10
V (j )




  (at  = 2000 rad/sec)


o

i

V (j ) 19.95
V (j )




 ...(ii)

Equating equation (i) and (ii) 
2 19.95
R



2R

19.95
  R = 0.1

18. As given block diagram:

As given that,

For unit step input response has damped
oscillation we need to obtain damped natural
frequency.

Now, we get,
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The closed loop transfer function for the given
diagram.

 

 
c

14.4
s 1 0.1sC(s) G(s)G(s)

14.4R(s) 1 G (s)Gp(s) 1
s 1 0.1s


 

 


  2
14.4 14.4

s 1 0.1s 14.4 s 0.1s 14.4
 

   

2
n

2 2 2
n 0

144
s 10s 144 s 2 s


 

    

Now, by comparison 2
n 144 

 n = 12 rad/sec

2n = 10

  = 
n

10 10 0.416
2 24

 


So, damped natural frequency :

d = 2 2
n 1 12 1 (0.416) 10.90rad/sec     

19. According to the given block diagram :

1
p c

2

1 T s2.2G (s) ,G (s) k
(1 0.1s)(1 0.4s)(1 1.2s) 1 T s

 
       

When D(s) is unit step the steady state error
should be at maximum 0.1, we need to obtain
minimum value of k.

Since there are 2 inputs (R(s), D(s)), we want E(s)
due to D(s), so R(s) should be made 0

We know that,

p

p c

G (s)E(s)
D(s) 1 G G (s)




Now,
 

p

p 0

G (s) 1E(s)         D(s)
ss 1 G (s)G (s)

      


Steady state error e() =

p

s 0 s 0
p c

G (s)
limsE(s) lim

1 G (s)G (s) 

 
  

  

 
s 0

1

2

2.2
(1 0.1s)(1 0.4s)(1 1.2s)e( ) lim
1 T s 2.21 k
1 T s (1 0.1s)(1 0.4s1 1.2s)



 
 

       
        

2.2
1 2.2k





Now, We need e()  0.1

So, 2.2
0.1

1 2.2k





 k   9.54

 kmin = 9.54

Hence, the Minimum value of k is 9.54.

20. As given that

x x u  
y = x

u = –kx

According to the question we need to obtain value
of such that closed loop pole will be at s = –2.

Closed loop pole is roots of characteristic equation,

Characteristic equation in terms of state space is

|sI – A| = 0

x x u x kx      ( u = –kx)

 sX(s) = –X(s) – kX(s)

 x x( k 1)  

 X(s) [s + 1 – k] = 1

 x Ax BU 

By comparison A = – k – 1

As we know that,

Characteristic equation : |sI – A| = 0

|s – (–k – 1) = 0|

|s + k + 1| = 0

s + k + 1 = 0

(Determinant of a constant is constant)

k + 1 = 2

(closed loop pole is k + 1 and if should be at 2)

k 1






